TPPM0301 400-mA LOW-DROPOUT REGULATOR WITH AUXILIARY POWER MANAGEMENT SLVS315 – SEPTEMBER 2000

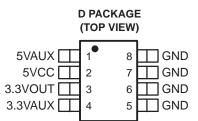
- Automatic Input Voltage Source Selection
- Glitch-Free Regulated Output
- 5-V Input Voltage Source Detector With Hysteresis
- 400-mA Load Current Capability With 5-V or 3.3-V Input Source
- Low r_{DS(on)} Auxiliary Switch
- Thermally Enhanced Packaging Concept for Efficient Heat Management

description

The TPPM0301 is a low-dropout regulator with auxiliary power management that provides a constant 3.3-V supply at the output capable of driving a 400-mA load.

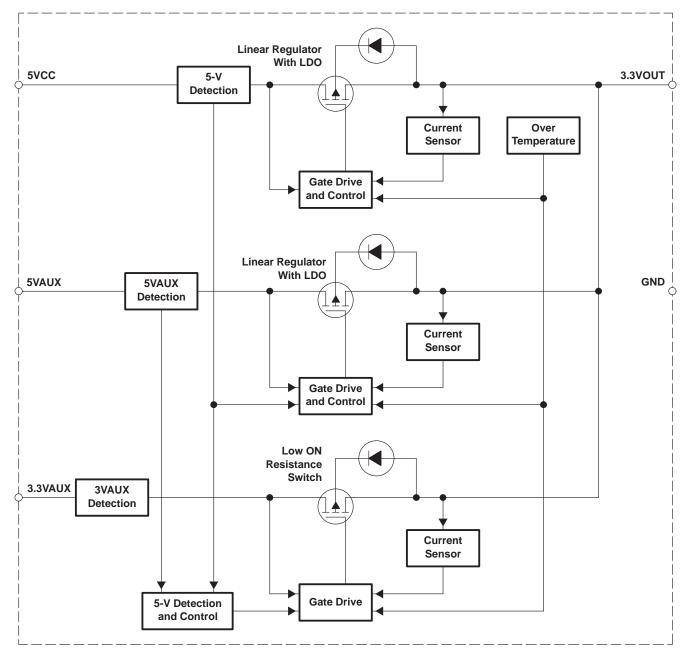
The TPPM0301 provides a regulated power output for systems that have multiple input sources and require a constant voltage source with a low-dropout voltage. This is a single output, multiple input intelligent power source selection device with a low-dropout regulator for either 5VCC or 5VAUX inputs, and a low- resistance bypass switch for the 3.3VAUX input.

Transitions may occur from one input supply to another without generating a glitch, outside of the specification range, on the 3.3-V output. The device has an incorporated reverse blocking scheme to prevent excess leakage from the input terminals in the event that the output voltage is greater than the input voltage.


The input voltage is prioritized in the following order: 5VCC, 5VAUX, and 3.3VAUX.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2000, Texas Instruments Incorporated

TPPM0301 400-mA LOW-DROPOUT REGULATOR WITH AUXILIARY POWER MANAGEMENT SLVS315 - SEPTEMBER 2000

functional block diagram

Terminal Functions

TERM	INAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
3.3VAUX	4	Ι	3.3-V auxiliary input
3.3VOUT	3	0	3.3-V output with a typical capacitance load of 4.7 μF
5VAUX	1	Ι	5-V auxiliary input
5VCC	2	Ι	5-V main input
GND	5, 6, 7, 8	Ι	Ground

INPUT	VOLTAGI (V)	E STATUS	INPUT SELECTED	OUTPUT (V)	OUTPUT (l)
5VCC	5VAUX	3.3VAUX	5VCC/5VAUX/3.3VAUX	3.3VOUT	IL (mA)
0	0	0	None	0	0
0	0	3.3	3.3VAUX	3.3	375
0	5	0	5VAUX	3.3	400
0	5	3.3	5VAUX	3.3	400
5	0	0	5VCC	3.3	400
5	0	3.3	5VCC	3.3	400
5	5	0	5VCC	3.3	400
5	5	3.3	5VCC	3.3	400

Table 1. Input Selection

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, 5-V main input, V _(5VCC) (see Notes 1 and 2) 7 V	7 V
Auxiliary voltage, 5-V input, V _(5VAUX) (see Notes 1 and 2)	7 V
Auxiliary voltage, 3.3-V input, V _(3.3VAUX) (see Notes 1 and 2)	5 V
3.3-V output current limit, I _(LIMIT) 1.5 A	1.5 A
Continuous power dissipation, P _D (see Note 3) 1 W	1 W
Electrostatic discharge susceptibility, human body model, V(HBMESD) 2 kV	
Operating ambient temperature range, T _A 0°C to 70°C	0°C to 70°C
Storage temperature range, T _{stg} –55°C to 150°C	–55°C to 150°C
Operating junction temperature range, T ₁	
Lead temperature (soldering, 10 second), T _(LEAD) 260°C	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to GND.

- 2. Absolute negative voltage on these terminal should not be below -0.5 V.
- 3. $R_{\theta JA}$ must be less than 55°C/W, typically achieved with two square inches of copper printed circuit board area connected to the GND terminals for heat dissipation or equivalent.

recommended operating conditions

	MIN	TYP	MAX	UNIT
5-V main input, V(5VCC)	4.5		5.5	V
5-V auxiliary input, V _(5VAUX)	4.5		5.5	V
3.3-V auxiliary input, V _(3.3VAUX)	3		3.6	V
Load capacitance, CL	4.23	4.7	5.17	μF
Load current, IL	0		400	mA
Ambient temperature, T _A	0		70	°C

TPPM0301 400-mA LOW-DROPOUT REGULATOR WITH AUXILIARY POWER MANAGEMENT

SLVS315 - SEPTEMBER 2000

electrical characteristics over recommended operating free-air temperature range, $T_A = 0^{\circ}C$ to 70°C, C_L = 4.7 μ F (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V(5VCC) [/] V(5VAUX)	5-V inputs		4.5	5	5.5	V
I _(Q)	Quiescent supply current	From 5VCC or 5VAUX terminals, $I_L = 0$ to 400 mA		2.5	5	mA
		From 3.3VAUX terminal, IL = 0 A		250	500	μA
۱L	Output load current		0.4			٨
I(LIMIT)	Output current limit	3.3VOUT = 0 V		1	1.5	A
T(TSD) [†]	Thermal shutdown	2.2)(OUT output observed to 0.)(150		180	°C
T _{hys} †	Thermal hysteresis	3.3VOUT output shorted to 0 V		15		-0
V _(3.3VOUT)	3.3-V output	I _L = 400 mA	3.135	3.3	3.465	V
CL	Load capacitance	Minimal ESR to insure stability of regulated output		4.7		μF
llkg(REV)	Reverse leakage output current	Tested for input that is grounded. 3.3VAUX, 5VAUX or 5VCC = GND, 3.3VOUT = 3.3 V			50	μA

[†] Design targets only. Not tested in production.

5-V detect

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V(TO_LO)	Threshold voltage, low	5VAUX or 5VCC \downarrow	3.85	4.05	4.25	V
V(TO_HI)	Threshold voltage, high	5VAUX or 5VCC ↑	4.1	4.3	4.5	V

auxiliary switch

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R(SWITCH)	Auxiliary switch resistance	5VAUX = 5VCC = 0 V, 3.3VAUX = 3.3 V, I _L = 150 mA			0.4	Ω
$\Delta V_{O(\Delta VI)}$	Line regulation voltage	5VAUX or 5VCC = 4.5 V to 5.5 V		2		mV
$\Delta V_{O(\Delta IO)}$	Load regulation voltage	20 mA < I _L < 400 mA		40		mV
$V_I - V_O$	Dropout voltage	I _L < 400 mA			1	V

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Thermal impedance, junction-to-case			38	°C/W
$R_{\theta JA}$	Thermal impedance, junction-to-ambient			97	°C/W

THERMAL INFORMATION

To ensure reliable operation of the device, the junction temperature of the output device must be within the safe operating area (SOA). This is achieved by having a means to dissipate the heat generated from the junction of the output structure. There are two components that contribute to thermal resistance. They consist of two paths in series. The first is the junction to case thermal resistance, $R_{\theta JC}$; the second is the case to ambient thermal resistance, $R_{\theta JA}$, is determined by:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

The ability to efficiently dissipate the heat from the junction is a function of the package style and board layout incorporated in the application. The operating junction temperature is determined by the operating ambient temperature, T_A , and the junction power dissipation, P_J .

The junction temperature, T_J, is equal to the following thermal equation:

$$T_{J} = T_{A} + P_{J} (R_{\theta JC}) + P_{J} (R_{\theta CA})$$
$$T_{J} = T_{A} + P_{J} (R_{\theta JA})$$

This particular application uses the enhanced 8-pin SO package with an integral fused lead frame (terminals 5 to 8). By incorporating a dedicated heat spreading copper plane of at least two square inches on a double-side printed-circuit board (PCB), a thermal resistance of junction to ambient, $R_{\theta,IA}$, of 50°C/W can be obtained.

Alternatively, if no dedicated copper plane is incorporated for this device and the PCB has a multilayer construction, the ground terminals (5 to 8) could be electrically connected to the ground plane of the board. This will provide a means for heat spreading through the copper plane associated within the PCB (GND layer). This concept could provide a thermal resistance from junction to ambient, $R_{\theta JA}$, of 70°C/W if implemented correctly.

Hence, maximum power dissipation allowable for an operating ambient temperature of 70°C, and a maximum junction temperature of 150°C is determined as:

$$P_J = (T_J - T_A) / R_{\theta JA}$$

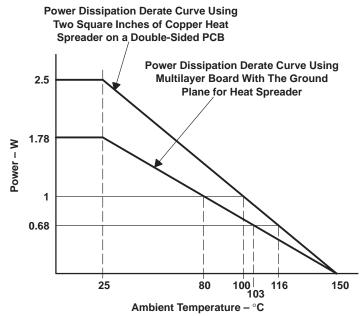
 $P_J = (150 - 70) / 50 = 1.6 W$

Using two square inches of dedicated copper plane on double-sided PCB,

P_J = (150 - 70) / 70 = 1.14 W

Using a multilayer board and utilizing the ground plane for heat spreading, worst case maximum power dissipation is determined by:

 $P_D = (5.5 - 3) \times 0.4 = 1 \text{ W}$


Normal operating maximum power dissipation is (see Figure 1):

 $P_D = (5 - 3.3) \times 0.4 = 0.68 \text{ W}$

TPPM0301 400-mA LOW-DROPOUT REGULATOR WITH AUXILIARY POWER MANAGEMENT SLVS315 – SEPTEMBER 2000

THERMAL INFORMATION

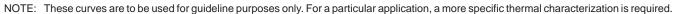


Figure 1. Power Dissipation Derating Curves

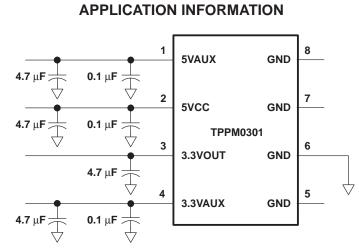


Figure 2. Typical Application Schematic

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TPPM0301DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	0301	Samples
TPPM0301DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	0301	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

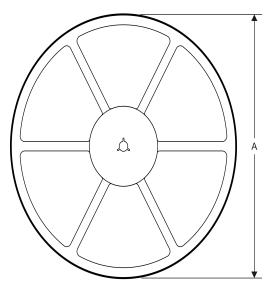
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

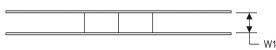
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

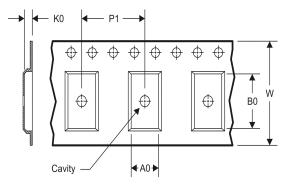
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

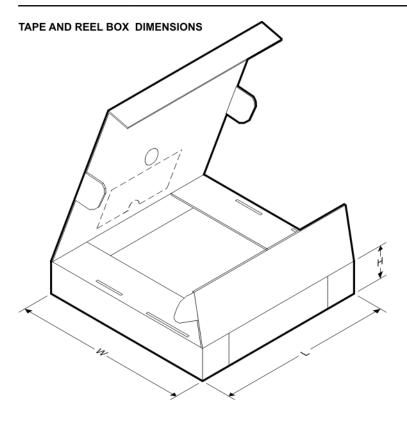
Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal


Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPPM0301DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Apr-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPPM0301DR	SOIC	D	8	2500	340.5	338.1	20.6

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated