Distributed by:
JAMECO

www.Jameco.com 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

FEATURES

- EXPANDED VALUE RANGE \& REDUCED CASE SIZES
- MOLDED CONSTRUCTION FOR HIGH SOLDERING HEAT RESISTANCE
- ELEVEN CASE SIZES (J, P, A2, A, B2, B, C2, C, V, D AND E)
- BOTH FLOW AND REFLOW SOLDERING APPLICABLE
- TAPE \& REEL PACKAGING COMPATIBLE WITH AUTOMATIC PICK \& PLACE EQUIPMENT

RoHS
Compliant
includes all homogeneous materials
*See Part Number System for Details
SPECIFICATIONS \& PERFORMANCE CHARACTERISTICS

Capacitance Range	$0.1 \mu \mathrm{~F}$ to $680 \mu \mathrm{~F}$								
Capacitance Tolerance	$\pm 20 \%$ (M), $\pm 10 \%$ (K)								
Rated Voltage Range @ $85^{\circ} \mathrm{C}$ (Vdc)	2.5	4.0	6.3	10	16	20	25	35	50
Surge Voltage Rating @ $85^{\circ} \mathrm{C}$ (Vdc)	3.3	5.2	8.0	13	20	28	33	46	85
Derated Voltage @ $125^{\circ} \mathrm{C}$ (Vdc)	1.8	2.5	4.0	6.3	10	13	16	22	32
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (to $+125^{\circ} \mathrm{C}$ with Derating)								
Dissipation Factor	See Case Size and Specifications Table								
Leakage Current @ $+25^{\circ} \mathrm{C}$ (After 5 Minutes at Rated Voltage)	Not More Than 0.01 CV or $0.5 \mu \mathrm{~A}$, whichever is greater								
Capacitance Change With Temperature	$-55^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		
A2, A, B2, B, C, D \& E Case Size	$\Delta \mathrm{C}$ - 12\%			$\Delta C \pm 12 \%$			$\Delta C \pm 12 \%$		
J \& P Case Size	$\Delta \mathrm{C}-20 \%$			$\Delta \mathrm{C} \pm 20 \%$			$\Delta \mathrm{C} \pm 20 \%$		
Resistance to Soldering Heat ($+260^{\circ} \mathrm{C}$ for 5 Seconds)	$\Delta \mathrm{C} \pm 5 \%^{*} \mathrm{Max}, \mathrm{LC}=$ Less than initial specification. DF = Less than initial specification								
Moisture Resistance (500 hours; 90~95\% RH @ 40º)	$\Delta \mathrm{C} \pm 5 \%^{*}$ Max, LC $=$ Less than initial specification. $D F=150 \%$ of initial specification								
Temperature Cycling (5 cycles; $-55^{\circ} \mathrm{C} \sim+125^{\circ} \mathrm{C}$)	$\Delta \mathrm{C} \pm 5 \%^{*}$ Max, LC $=$ Less than initial specification. DF = Less than initial specification								
Load Life (at Rated Voltage) (2,000 hours @ $85^{\circ} \mathrm{C}$)	$\Delta C \pm 10 \%{ }^{*}$ Max, $L C=125 \%$ of initial specification. DF = Less than initial specification								
Base Failure Rate (1.0 / Volt)	$1 \% / 1000$ hours at 60% confidence level ($+85^{\circ} \mathrm{C}$)								

${ }^{*} \pm 12 \% \sim \pm 15 \%$ for extended values, $\pm 20 \%$ for J \& P case size values
POWER DISSIPATION @ $25^{\circ} \mathrm{C}$ (FREE AIR) \&
EQUIVALENT SERIES INDUCTANCE (ESL)
RIPPLE CURRENT CORRECTION FACTOR:

Ambient Temperature	$25^{\circ} \mathrm{C}$	$+55^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$+105^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$
Correction Factor	1.0	0.90	0.80	0.40	0.15

RIPPLE CURRENT/VOLTAGE RATINGS:

Imax. $=\sqrt{\frac{\mathrm{Pd}}{\mathrm{ESR}}} \quad V$ max. $=Z \bullet \sqrt{\frac{\mathrm{Pd}}{\mathrm{ESR}}}$
Imax. $=$ Ripple Current rating (Arms)
Pd = Power dissipation (watt)
ESR = Equivalent series resistance (ohm)
V max. $=$ Ripple voltage rating (V rms)
$Z=$ The capacitors impedance $($ ohm $)=\sqrt{(E S R)^{2}+(X L-X C)^{2}}$

Case Code	Pd Max. (W)	ESL (nH)
P	0.025	1.00
A2	0.050	1.20
A	0.070	1.20
B2	0.070	1.50
B	0.080	1.50
C2	0.090	
C	0.110	2.70
V	0.125	
D	0.150	3.00
E	0.165	3.00

PART NUMBER SYSTEM

Packaging: TR=Tape/Reel Voltage
Tolerance Code: $\mathrm{K}= \pm 10 \%, \mathrm{M}= \pm 20 \%$
Capacitance Code
Series

STANDARD AND EXTENDED PRODUCT SPECIFICATIONS TABLE

*Extended Case Sizes
Chart show Case Size, Max. Tan δ @ $120 \mathrm{~Hz} /+20^{\circ} \mathrm{C}$, Max. ESR @ $100 \mathrm{KHz} /+20^{\circ} \mathrm{C}$

$\begin{aligned} & \text { Cap } \\ & (\mu \mathrm{F}) \end{aligned}$	Code	Working Voltage (Vdc)								
		2.5	4.0	6.3	10	16	20	25	35	50
0.1	104	-	-	-	-	-	A2*6\%/40	-	A 4\%/18	-
0.15	154	-	-	-	-	-	A2*6\%/35	-	A $4 \% / 18 \Omega$	-
0.22	224	-	-	-	-	-	A2*6\%/35	-	A $4 \% / 18 \Omega$	B 4\%/14
0.33	334	-	-	-	-	P 10\%/40	A2*6\%/30	-	A $4 \% / 15 \Omega$	B 4\%/10
0.47	474	-	-	-	-	P 10\%/35	A2*6\%/27	A $4 \% / 14 \Omega$	$\begin{aligned} & \text { A* } 6 \% / 12 \Omega \\ & \text { B } 4 \% / 8.0 \Omega \end{aligned}$	B 4\%/9.0
0.68	684	-	-	-	P 10\%/25	$\begin{aligned} & \hline \text { P } 10 \% / 25 \Omega \\ & \text { A2*6\%/25 } \end{aligned}$	$\begin{gathered} \text { A2* } 6 \% / 15 \Omega \\ \text { A } 4 \% / 12 \Omega \\ \hline \end{gathered}$	A*6\%/10	$\begin{aligned} & \hline \text { A*6\%/9.0 } \\ & \text { B } 4 \% / 5.4 \Omega \end{aligned}$	C 4\%/7.0
1.0	105	-	-	P 10\%/25	$\begin{aligned} & \text { P } 10 \% / 25 \Omega \\ & \text { A2* } 8 \% / 25 \Omega \end{aligned}$	$\begin{gathered} \mathrm{J} 10 \% / 30 \Omega \\ \mathrm{P} 20 \% / 25 \Omega \\ \text { A1* } 6 \% / 16 \Omega \\ \text { A } 4 \% / 10 \Omega \end{gathered}$	$\begin{gathered} \text { A2* } 6 \% / 13 \Omega \\ \text { A* } 6 \% / 9.0 \Omega \end{gathered}$	$\begin{gathered} \mathrm{P} 6 \% / 8.0 \Omega \\ \mathrm{~A} 26 \% / 13 \Omega \\ \text { A*} 6 \% / 8.0 \Omega \end{gathered}$	$\begin{gathered} \text { A2 } 6 \% / 13 \Omega \\ \text { A* } 6 \% / 8.0 \Omega \\ \text { B } 4 \% / 4.8 \Omega \end{gathered}$	C 4\%/5.5
1.5	155	-	P 10\%/25	$\begin{aligned} & \text { P } 10 \% / 25 \Omega \\ & \text { A2* } 8 \% / 25 \Omega \end{aligned}$	$\begin{gathered} \text { J } 20 \% / 30 \Omega \\ \text { P } 20 \% / 25 \Omega \\ \text { A2* } 8 \% / 20 \Omega \\ \text { A } 4 \% / 8.0 \Omega \end{gathered}$	$\begin{gathered} \mathrm{J} 10 \% / 25 \Omega \\ \mathrm{~A} 2^{*} 6 \% / 13 \Omega \\ \mathrm{~A} 4 \% / 8.0 \Omega \end{gathered}$	$\begin{gathered} \mathrm{A} 2 * 6 \% / 13 \Omega \\ \mathrm{~A} * 6 \% / 6.5 \Omega \end{gathered}$	$\begin{gathered} \text { A*6\%/8.0 } \\ \text { B } 4 \% / 4.6 \Omega \end{gathered}$	$\begin{aligned} & \mathrm{A}^{*} 6 \% / 8.0 \Omega \\ & \mathrm{~B} * 6 \% / 4.0 \Omega \\ & \mathrm{C} 4 \% / 3.0 \Omega \end{aligned}$	C $4 \% / 4.0 \Omega$
2.2	225	P 10\%/25	$\begin{aligned} & \text { P } 10 \% / 25 \Omega \\ & \text { A2* } 8 \% / 25 \Omega \end{aligned}$	J $20 \% / 20 \Omega$ P $20 \% / 20 \Omega$ A2* $8 \% / 18 \Omega$ A $4 \% / 8.0 \Omega$	$\begin{gathered} \text { J } 20 \% / 30 \Omega \\ \text { P } 20 \% / 20 \Omega \\ \text { A2* } 8 \% / 12 \Omega \\ \text { A } 4 \% / 7.0 \Omega \\ \hline \end{gathered}$	$\begin{gathered} \text { P } 10 \% / 19 \Omega \\ \text { A2*6\%/13 } \\ \text { A* } 6 \% / 6.0 \Omega \end{gathered}$	$\begin{gathered} \hline \text { P } 10 \% / 8.0 \Omega \\ \text { A2 } 6 \% / 7.0 \Omega \\ \text { A* } 6 \% / 6.0 \Omega \\ \text { B } 4 \% / 3.5 \Omega \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A}^{*} 6 \% / 8.0 \Omega \\ & \mathrm{~B}^{\star} 6 \% / 4.0 \Omega \end{aligned}$	$\begin{gathered} \mathrm{A} 6 \% / 5 \Omega \\ \mathrm{~B} * 6 \% / 4.2 \Omega \\ \mathrm{C} 4 \% / 3.0 \Omega \end{gathered}$	D 4\%/1.8
3.3	335	P 10\%/25	$\begin{gathered} \text { P } 20 \% / 20 \Omega \\ \text { A2* } 8 \% / 18 \Omega \\ \text { A } 4 \% / 8.0 \Omega \end{gathered}$	$\begin{gathered} \hline \text { J } 20 \% / 20 \Omega \\ \text { P } 20 \% / 13 \Omega \\ \text { A2* } 8 \% / 9.0 \Omega \\ \text { A } 4 \% / 7.5 \Omega \\ \hline \end{gathered}$	$\begin{aligned} & \text { J } 20 \% / 25 \Omega \\ & \text { P } 20 \% / 20 \Omega \\ & \text { A2* } 8 \% / 12 \Omega \\ & \text { A* } 8 \% / 5.5 \Omega \end{aligned}$	$\begin{gathered} \hline \text { P } 10 \% / 8.0 \Omega \\ \text { A2 } 8 \% / 7.0 \Omega \\ \text { A* } 6 \% / 5.0 \Omega \\ \text { B } 4 \% / 3.5 \Omega \end{gathered}$	$\begin{gathered} \text { A2 } 8 \% / 5.0 \Omega \\ \text { A* } 6 \% / 5.0 \Omega \\ \text { B2 } 6 \% / 3.9 \Omega \\ \text { B*6\%/3.0 } \end{gathered}$	A $6 \% / 7.0 \Omega$ B* $6 \% / 3.5 \Omega$ C $4 \% / 2.5 \Omega$	$\begin{array}{\|c\|} \hline \text { B2 } 6 \% / 3.0 \Omega \\ \text { B*6\%/4.0 } \\ \text { C } 4 \% / 2.5 \Omega \\ \text { D } 4 \% / 2.0 \Omega \\ \hline \end{array}$	D $4 \% / 1.4 \Omega$
4.7	475	$\begin{aligned} & \text { P } 20 \% / 20 \Omega \\ & \text { A2* } 8 \% / 18 \Omega \end{aligned}$	$\begin{gathered} \text { P } 20 \% / 12 \Omega \\ \text { A2* } 8 \% / 10 \Omega \\ \text { A } 4 \% / 7.5 \Omega \end{gathered}$	$\begin{gathered} \text { J } 20 \% / 15 \Omega \\ \text { P } 20 \% / 12 \Omega \\ \text { A2* } 8 \% / 7.5 \Omega \\ \text { A* } 8 \% / 6.0 \Omega \end{gathered}$	$\begin{gathered} \text { J } 20 \% / 10 \Omega \\ \text { P } 20 \% / 10 \Omega \\ \text { A2* } 8 \% / 8.0 \Omega \\ \text { A* } 8 \% / 5.0 \Omega \\ \text { B } 4 \% / 3.5 \Omega \end{gathered}$	$\begin{gathered} \text { A2 } 8 \% / 4.5 \Omega \\ \text { A* } 6 \% / 5.0 \Omega \\ \text { B* } 6 \% / 3.0 \Omega \end{gathered}$	$\begin{gathered} \hline \text { A2 } 15 \% / 5.0 \Omega \\ \text { A* } 6 \% / 5.0 \Omega \\ \text { B2 } 6 \% / 3.0 \Omega \\ \text { B }^{*} 6 \% / 3.0 \Omega \\ \text { C } 4 \% / 2.4 \Omega \\ \hline \end{gathered}$	$\begin{gathered} \text { B2 } 6 \% / 3.0 \Omega \\ \text { B* } 6 \% / 3.0 \Omega \\ \text { C } 4 \% / 2.4 \Omega \end{gathered}$	$\begin{aligned} & \text { C* } 6 \% / 2.2 \Omega \\ & \text { D } 4 \% / 1.5 \Omega \end{aligned}$	D $4 \% / 1.4 \Omega$
6.8	685	$\begin{aligned} & \text { P } 20 \% / 20 \Omega \\ & \text { A2* } 8 \% / 16 \Omega \end{aligned}$	$\begin{gathered} \text { J } 20 \% / 15 \Omega \\ \text { P } 20 \% / 12 \Omega \\ \text { A2* } 8 \% / 8.0 \Omega \\ \text { A* } 8 \% / 6.0 \Omega \end{gathered}$	$\begin{gathered} \text { J } 20 \% / 7.0 \Omega \\ \text { P } 20 \% / 12 \Omega \\ \text { A2* } 8 \% / 7.5 \Omega \\ \text { A }{ }^{*} 8 \% / 5.0 \Omega \\ \text { B } 6 \% / 3.5 \Omega \end{gathered}$	$\begin{gathered} \mathrm{A} 28 \% / 8.0 \Omega \\ \text { A } 8 \% / 4.5 \Omega \\ \mathrm{~B} 8 \% / 3.0 \Omega \end{gathered}$	$\begin{gathered} \text { A2* } 2 \% / 5.0 \Omega \\ \text { A }^{*} 6 \% / 5.0 \Omega \\ \text { B2 } 6 \% / 5.0 \Omega \\ \text { B* } 6 \% / 2.5 \Omega \\ \text { C } 6 \% / 1.9 \Omega \end{gathered}$	$\begin{gathered} \mathrm{B} 26 \% / 3.0 \Omega \\ \mathrm{~B} * 6 \% / 2.8 \Omega \\ \mathrm{C} 6 \% / 1.9 \Omega \end{gathered}$	B $6 \% / 2.5 \Omega$ C* $6 \% / 1.9 \Omega$ D $6 \% / 1.4 \Omega$	$\begin{aligned} & C * 6 \% / 1.9 \Omega \\ & 0 \% / 1.30 \end{aligned}$	-
10	106	$\begin{aligned} & \text { J } 20 \% / 12 \Omega \\ & \text { P } 20 \% / 12 \Omega \\ & \text { A2* } 8 \% / 15 \Omega \end{aligned}$	$\begin{gathered} \text { J } 20 \% / 12 \Omega \\ \text { P } 20 \% / 12 \Omega \\ \text { A2 } 2.12 \% / 8.0 \Omega \\ \text { A* } 8 \% / 5.0 \Omega \\ \text { B } 6 \% / 3.5 \Omega \end{gathered}$	$\begin{gathered} \text { J } 20 \% / 8.0 \Omega \\ \text { P } 20 \% / 12 \Omega \\ \text { A2* } 8 \% / 10 \Omega \\ \text { A* } 8 \% / 4.0 \Omega \\ \text { B } 6 \% / 3.0 \Omega \end{gathered}$	$\begin{gathered} \hline \mathrm{P} 20 \% / 6.0 \Omega \\ \mathrm{~A} 28 \% / 5.0 \Omega \\ \mathrm{~A} * 8 \% / 3.2 \Omega \\ \mathrm{~B} 2 * 8 \% / 3.2 \Omega \\ \mathrm{~B} * 8 \% / 2.5 \Omega \\ \mathrm{C} 6 \% / 1.8 \Omega \\ \hline \end{gathered}$	$\begin{gathered} \text { A } 8 \% / 5.0 \Omega \\ \text { B2 } 8 \% / 4.0 \Omega \\ \text { B* } 6 \% / 2.4 \Omega \\ \text { C } 6 \% / 1.8 \Omega \end{gathered}$	$\begin{aligned} & \mathrm{B}^{*} 6 \% / 2.5 \Omega \\ & \text { C* } 6 \% / 1.8 \Omega \\ & \text { D } 6 \% / 1.3 \Omega \end{aligned}$	$\begin{gathered} \mathrm{C} 26 \% / 2.0 \Omega \\ \mathrm{C} * 6 \% / 1.8 \Omega \\ \mathrm{D} 6 \% / 1.2 \Omega \end{gathered}$	$\begin{aligned} & \mathrm{C} 6 \% / 1.5 \Omega \\ & \mathrm{D} 6 \% / 1.0 \Omega \\ & \mathrm{E} * 6 \% / 1.0 \Omega \end{aligned}$	-
15	156	$\begin{gathered} \mathrm{J} 20 \% / 8.0 \Omega \\ \text { A2*12\%/10 } \\ \text { A* } 8 \% / 5.0 \Omega \end{gathered}$	$\begin{gathered} \mathrm{P} 20 \% / \\ \mathrm{A} 2^{*} 12 \% / 8.0 \Omega \\ \mathrm{~A}^{*} 8 \% / 4.0 \Omega \\ \mathrm{~B}^{*} 8 \% / 3.0 \Omega \end{gathered}$	P $20 \% / 5.0 \Omega$ A2 $12 \% / 4.0 \Omega$ A ${ }^{*} 8 \% / 3.5 \Omega$ B2 $8 \% / 3.5 \Omega$ B* $8 \% / 2.5 \Omega$ C $6 \% / 1.8 \Omega$	$\begin{gathered} \text { A2 } 20 \% / 3.0 \Omega \\ \text { B2* } 8 \% / 2.5 \Omega \\ \text { C } 6 \% / 1.8 \Omega \end{gathered}$	$\begin{gathered} \text { A } 12 \% / 5.0 \Omega \\ \text { B2* } 6 \% / 2.5 \Omega \\ \text { C* } 6 \% / 1.8 \Omega \\ \text { D } 6 \% / 1.8 \Omega \end{gathered}$	$\begin{aligned} & \text { C*6\%/1.7 } \\ & \text { D } 6 \% / 0.8 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C} 6 \% / 1.5 \Omega \\ & \mathrm{D} * 6 \% / 1.0 \Omega \end{aligned}$	D*6\%0.9	-
22	226	$\begin{gathered} \text { P } 20 \% / 4.0 \Omega \\ \text { A2*12\%/10 } \\ \text { A* } 8 \% / 4.0 \Omega \end{gathered}$	P $20 \% / 5.0 \Omega$ A2 $12 \% / 4.0 \Omega$ A* $8 \% / 3.5 \Omega$ B2 $8 \% / 3.5 \Omega$ B* $8 \% / 2.8 \Omega$ C $6 \% / 1.8 \Omega$	$\begin{array}{\|c\|} \hline \text { P } 20 \% / 4.0 \Omega \\ \text { A2 } 12 \% / 2.8 \Omega \\ \text { A }^{*} 10 \% / 4.5 \Omega \\ B^{*} 12 \% / 4.5 \Omega \\ \text { B* } 8 \% / 2.3 \Omega \\ \text { C } 6 \% / 1.8 \Omega \\ \hline \end{array}$	A $12 \% / 2.5 \Omega$ B2 $12 \% / 4.0 \Omega$ $B^{*} 8 \% / 2.4 \Omega$ $C^{*} 8 \% / 1.8 \Omega$ D $6 \% / 1.5 \Omega$	$\begin{array}{\|c} \text { B2 } 10 \% / 2.2 \Omega \\ \text { B*6\%/2.5 } \\ \text { C*6\%/1.6 } \\ \text { D } 6 \% / 0.8 \Omega \end{array}$	$\begin{gathered} \mathrm{C} 26 \% / 1.4 \Omega \\ \mathrm{C} * 6 \% / 1.5 \Omega \\ \mathrm{D} * 6 \% / 0.8 \Omega \end{gathered}$	D*6\%/0.8	-	-
33	336	$\begin{gathered} \text { P } 20 \% / 5.0 \Omega \\ \text { A2 } 12 \% / 4.0 \Omega \\ \text { A } 8 \% / 3.5 \Omega \\ \text { B2*8\%/3.5 } \\ \text { B* } 8 \% / 3.0 \Omega \end{gathered}$	$\begin{gathered} \hline \mathrm{P} 20 \% / 4.0 \Omega \\ \mathrm{~A} 28 \% / 4.5 \Omega \\ \mathrm{~A}^{*} 10 \% / 4.5 \Omega \\ \mathrm{~B} 212 \% / 4.5 \Omega \\ \mathrm{~B} \text { * } 8 \% / 2.4 \Omega \\ \mathrm{C} 6 \% / 1.8 \Omega \\ \hline \end{gathered}$	A2 $18 \% / 3.0 \Omega$ A $12 \% / 5.0 \Omega$ B2 12\%/1.7 Ω B*8\%/2.0 Ω C*8\%/1.8 Ω D $6 \% / 1.5 \Omega$	$\begin{array}{\|c} \text { B2 } 12 \% / 1.7 \Omega \\ \text { B}^{\star} 8 \% / 2.0 \Omega \\ \text { C* } 8 \% / 1.6 \Omega \\ \text { D } 6 \% / 0.8 \Omega \end{array}$	$\begin{gathered} \mathrm{B} 8 \% / 1.4 \Omega \\ \mathrm{C} 26 \% / 1.4 \Omega \\ \text { C* } 6 \% / 1.2 \Omega \\ \text { D*6\%/0.8 } \end{gathered}$	D*6\%/0.8	D 6\%/0.7	-	-

Highlighting Denotes New Values

NIC COMPONENTS CORP. www.niccomp.com I www.lowESR.com I www.RFpassives.com I www.SMTmagnetics.com

STANDARD AND EXTENDED PRODUCT SPECIFICATIONS TABLE

*Extended Case Sizes
Chart Shows Case Sizes, Max. Tan $\delta @ 120 \mathrm{~Hz} / 20^{\circ} \mathrm{C}$, Max. ESR @ $100 \mathrm{KHz} / 20^{\circ} \mathrm{C}$

$\begin{aligned} & \text { Cap } \\ & (\mu \mathrm{F}) \\ & \hline \end{aligned}$	Code	Working Voltage (Vdc)						
		2.5	4.0	6.3	10	16	20	25
47	476	P 30\%/6.0 A2 12\%/4.5 Ω A*12\%/4.5 Ω B2*12\%/4.5 Ω B* $8 \% / 2.4 \Omega$	P 30\%/3.0 A2 $15 \% / 4.5 \Omega$ A $12 \% / 5.0 \Omega$ B2 12\%/3.0 B* $8 \% / 2.0 \Omega$ C*8\%/1.8 Ω D $6 \% / 1.2 \Omega$	A $12 \% / 2.0 \Omega$ B2 12\%/3.0 Ω B* $8 \% / 2.0 \Omega$ C*8\%/1.6 D 6\%/0.8	$\begin{gathered} \mathrm{B} 8 \% / 3.0 \Omega \\ \mathrm{C} 28 \% / 1.0 \Omega \\ \mathrm{C} * 8 \% / 1.6 \Omega \\ \mathrm{D} * 8 \% / 0.8 \Omega \end{gathered}$	$\begin{aligned} & \text { C*6\%/1.2 } \\ & \text { D*6\%/0.8 } \end{aligned}$	D*6\%0.8 Ω	
68	686	$\begin{gathered} \text { A } 18 \% / 3.0 \Omega \\ \mathrm{~B}^{\star} 8 \% / 2.0 \Omega \end{gathered}$	A $12 \% / 2.5 \Omega$ B2 15\%/3.0 B* $8 \% / 2.0 \Omega$ C* $8 \% / 1.6 \Omega$ D $6 \% / 0.8 \Omega$	A $30 \% / 2.0 \Omega$ B2 $20 \% / 2.0 \Omega$ B $10 \% / 1.8 \Omega$ C2 $10 \% / 0.8 \Omega$ C* $8 \% 1.2 \Omega$ D* $8 \% / 0.8 \Omega$	$\left\lvert\, \begin{array}{\|c\|} \hline \text { B } 12 \% / 0.9 \Omega \\ \text { C2 } 10 \% / 1.0 \Omega \\ C^{*} 8 \% / 1.2 \Omega \\ D^{*} 8 \% / 0.8 \Omega \end{array}\right.$	$\begin{aligned} & \mathrm{C} 6 \% / 0.7 \Omega \\ & \mathrm{D} * 6 \% / 0.7 \Omega \end{aligned}$	-	
100	107	$\begin{array}{\|c\|} \hline \text { A } 30 \% / 2.0 \Omega \\ \text { B2 18\%/2.0 } \\ \text { B*8\%/2.0 } \end{array}$	A 30\%/2.0 B2 20\%/1.3 Ω B*12\%/2.0 Ω C2 10\%/0.8 Ω C* $8 \% / 1.2 \Omega$ D*8\%/0.8 Ω	$\begin{gathered} \text { B2 } 20 \% / 1.3 \Omega \\ \text { B } 12 \% / 1.2 \Omega \\ \text { C2 } 10 \% / 0.8 \Omega \\ \text { C}^{*} 0 \% / 0.9 \Omega \\ \text { D}^{*} 8 \% / 0.8 \Omega \end{gathered}$	$\left\lvert\, \begin{array}{\|c\|} \hline \mathrm{C} 210 \% / 0.8 \Omega \\ \mathrm{C} 10 \% / 1.2 \Omega \\ \mathrm{~V} 8 \% / 0.5 \Omega \\ \mathrm{D} * 8 \% / 0.7 \Omega \end{array}\right.$	D*10\%/1.0 Ω	-	-
150	157	A $30 \% / 2.0 \Omega$ B2 $20 \% / 1.0 \Omega$ B*16\%/5.0 C2 $12 \% / 0.8 \Omega$ B2	$\begin{array}{\|c\|} \hline \mathrm{B} 18 \% / 2.0 \Omega \\ \mathrm{C} 210 \% / 0.8 \Omega \\ \mathrm{C}^{*} 10 \% / 1.0 \Omega \\ \mathrm{D}^{*} 8 \% / 0.7 \Omega \\ \hline \end{array}$	$\begin{aligned} & \text { B } 12 \% / 1.0 \Omega \\ & \text { C } 10 \% / 1.2 \Omega \\ & \text { D } 8 \% / 0.7 \Omega \end{aligned}$	$\begin{gathered} V 8 \% / 0.5 \Omega \\ D^{*} 10 \% / 0.7 \Omega \end{gathered}$	D*6\%/0.9 ${ }^{\text {a }}$	-	-
220	227	B2 $30 \% / 1.0 \Omega$ B $18 \% / 20 \Omega$ C2 $12 \% / 0.8 \Omega$ $C^{*} 12 \% / 1.0 \Omega$	$\begin{aligned} & \text { B } 18 \% / 0.5 \Omega \\ & \text { C } 12 \% / 1.2 \Omega \\ & \text { D}^{*} 8 \% / 0.7 \Omega \end{aligned}$	$\begin{aligned} & \text { C } 14 \% / 1.2 \Omega \\ & \text { V } 12 \% / 0.5 \Omega \\ & \text { D*12\%/0.8 } \end{aligned}$	$\begin{gathered} \text { D } 12 \% / 1.0 \Omega \\ E^{*} 8 \% / 0.9 \Omega \end{gathered}$	-	-	-
330	337	$\begin{aligned} & \text { B } 25 \% / 0.6 \Omega \\ & \text { C } 16 \% / 1.2 \Omega \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} 14 \% / 1.2 \Omega \\ & \text { V } 12 \% / 0.5 \Omega \\ & \mathrm{D} * 14 \% / 0.7 \Omega \\ & \hline \end{aligned}$	$\begin{aligned} & \text { V } 14 \% / 0.5 \Omega \\ & \text { D } 14 \% / 1.0 \Omega \end{aligned}$	-	-	-	-
470	477	$\begin{aligned} & \hline \mathrm{B} 35 \% / 0.6 \Omega \\ & \mathrm{C} 18 \% / 1.2 \Omega \\ & \mathrm{D} * 14 \% / 0.7 \Omega \end{aligned}$	D 16\%/1.0	D 20\%/0.3	-	-	-	-
680	687		D 24*/0.3	-	-	-	-	-

Highlighting Denotes New Values
DIMENSIONS (mm)

Case Code	Metric Code	English Code	L	W	H	P	a
J	1608	0603	1.6 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.3 ± 0.15	0.6 ± 0.1
P	2012	0805	2.0 ± 0.2	1.25 ± 0.2	1.2 MAX.	0.5 ± 0.2	0.9 ± 0.1
A2	3216	1206	3.2 ± 0.2	1.6 ± 0.2	1.2 MAX.	0.8 ± 0.3	1.2 ± 0.1
A	3216	1206	3.2 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	0.8 ± 0.3	1.2 ± 0.1
B2	3528	1411	3.5 ± 0.2	2.8 ± 0.2	1.2 MAX.	0.8 ± 0.3	2.3 ± 0.1
B	3528	1411	3.5 ± 0.2	2.8 ± 0.2	1.9 ± 0.2	0.8 ± 0.3	2.2 ± 0.1
C2	6032	2412	6.0 ± 0.3	3.2 ± 0.3	1.5 MAX.	1.3 ± 0.3	2.2 ± 0.1
C	6032	2412	6.0 ± 0.3	3.2 ± 0.3	2.6 ± 0.3	1.3 ± 0.3	2.2 ± 0.1
V	7343	2916	7.3 ± 0.2	4.3 ± 0.2	2.0 MAX.	1.3 ± 0.3	2.4 ± 0.1
D	7343	2916	7.3 ± 0.2	4.3 ± 0.2	2.9 ± 0.3	1.3 ± 0.3	2.4 ± 0.1
E	7343 H	2917	7.3 ± 0.2	4.3 ± 0.2	4.1 ± 0.2	1.3 ± 0.3	2.4 ± 0.1

J, P, A, A2, C, V, D \& E CASE SIZE

B \& B2 CASE SIZE

Terminations:
100\% Sn (Lead-Free)
Standard

CAPACITANCE CODES

Cap. ($\mu \mathrm{F}$)	$\begin{aligned} & \text { STD } \\ & \text { EIA Code } \end{aligned}$	$\begin{aligned} & \text { EIA Code } \\ & \text { 198D } \end{aligned}$	$\begin{gathered} \text { Code for } \\ \text { P Case Size } \end{gathered}$	Code for J Case Size				
				2.5Vdc	4Vdc	6.3 Vdc	10 Vdc	16 Vdc
0.1	104	A5	-	-	-	-	-	C
0.15	154	E5	-	-	-	-	-	-
0.22	224	J5	-	-	-	-	-	-
0.33	334	N5	N	-	-	-	-	-
0.47	474	S5	S	-	-	-	-	-
0.68	684	W5	W	-	-	-	-	-
1.0	105	A6	A	-	-	-	-	-
1.5	155	E6	E	-	-	-	A	-
2.2	225	J6	J	-	-	Γ	<	-
3.3	335	N6	N	-	-	\bigcirc	-	-
4.7	475	S6	S	-	-	J	D	-
6.8	685	W6	W	-	G	c	-	-
10	106	A7	$\overline{\mathrm{A}}$	e	(1)	$\bar{\Gamma}$	-	-
22	226	J7	J	-		-	-	-
33	336	N7	\bar{N}	-	-	-	-	-
47	476	S7	$\overline{\mathrm{S}}$	-	-	-	-	-

PRODUCTION CODE

Year	Month											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
2005	A	B	C	D	E	F	G	H	J	K	L	M
2006	N	P	Q	R	S	T	U	V	W	X	Y	Z
2007	a	b	C	d	e	f	g	h	j	k	I	m
2008	n	p	q	r	S	t	u	V	w	X	y	z

VOLTAGE CODES

Vottage	Code
2.5	e
4	G
6.3	J
10	A
16	C
20	D
25	E
35	V
50	H

COMPONENT MARKING
J Case Size

C, V \& D Case Size
2.5 V marked $2,6.3 \mathrm{~V}$ marked 6

RECOMMENDED LAND
PATTERN DIMENSIONS (mm)

Case Size	a	b	c
J	0.90	0.70	1.00
P	1.05	0.50	1.20
A \& A2	1.35	1.10	1.50
B \& B2	1.35	1.40	2.70
C	2.00	2.90	2.70
D	2.05	4.10	2.90
D	2.05	4.10	2.90

TAPE DIMENSIONS (mm)

Metric Code	Case Code	$\mathrm{A}_{0} \pm 0.2$	$\mathrm{B}_{0} \pm 0.2$	$W \pm 0.3$	$F \pm 0.05$	$\mathrm{P}_{0} \pm 0.1$	$\mathrm{P}_{0} \pm 0.1$	$\mathrm{P}_{0} \pm 0.05$	$\mathrm{G} \pm 0.1$	$\mathrm{K} \pm 0.2$	T	7" Reel
1608	J	1.0	1.8	8.0	3.5	4.0	2.0	2.0	1.75	1.1	0.2	4000
2012	P	1.4	2.2	8.0	3.5	4.0	4.0	2.0	1.75	1.4	0.2	3000
3216	A2	1.0	3.5	8.0	3.5	4.0	4.0	2.0	1.75	1.4	0.2	3000
3216	A	1.9	3.5	8.0	3.5	4.0	4.0	2.0	1.75	1.9	0.2	2000
3528	B2	3.2	3.8	8.0	3.5	4.0	4.0	2.0	1.75	1.4	0.2	3000
3528	B	3.2	3.8	8.0	3.5	4.0	4.0	2.0	1.75	2.1	0.2	2000
6032	C	3.7	6.4	12.0	5.65	4.0	8.0	2.0	1.5	3.0	0.3	500
7343	D	4.8	7.7	12.0	5.65	4.0	8.0	2.0	1.5	3.3	0.3	500
7343H	E	4.7	7.7	12.0	5.5	4.0	8.0	2.0	1.5	4.5	0.6	500

REEL DIMENSIONS (mm)

Tape Width	A	C	D	E	N	W_{1}	$\mathrm{~W}_{2}$
8 mm	178 ± 2.0	13 ± 0.5	21 ± 0.5	2.0 ± 0.5	50 min.	10 ± 2.0	14.5 max.
12 mm	178 ± 2.0	13 ± 0.5	21 ± 0.5	2.0 ± 0.5	50 min.	14.5 ± 2.0	18.5 max.

Cover tape peel-off specification

1. Peel-off speed : $300 \mathrm{~mm} / \mathrm{min}$.
2. Peel-off force : $\mathrm{F}=30-75 \mathrm{~g}$
3. Peel-off angle : $\quad \Theta=0-15^{\circ}$

Peel-off speed $(F)=50 \mathrm{~mm} / \mathrm{Sec}$.

NIC COMPONENTS CORP. www.niccomp.com I www.lowESR.com I www.RFpassives.com I www.SMTmagnetics.com

