FEATURES

- EXPANDED VALUE RANGE & REDUCED CASE SIZES
- MOLDED CONSTRUCTION FOR HIGH SOLDERING HEAT RESISTANCE
- ELEVEN CASE SIZES (J, P, A2, A, B2, B, C2, C, V, D AND E)
- BOTH FLOW AND REFLOW SOLDERING APPLICABLE
- TAPE & REEL PACKAGING COMPATIBLE WITH AUTOMATIC PICK & PLACE EQUIPMENT

*See Part Number System for Details

SPECIFICATIONS & PERFORMANCE CHARACTERISTICS

				_				
±20% (M), ±10% (K)								
2.5	4.0	6.3	10	16	20	25	35	50
3.3	5.2	8.0	13	20	28	33	46	85
1.8	2.5	4.0	6.3	10	13	16	22	32
	-5	5°C to +	85°C (1	to +125°	C with	Deratin	g)	
	S	ee Case	Size a	ınd Spe	cificatio	ns Tabl	е	
1	Not More	e Than ().01CV	or 0.5μ	A, whic	hever is	greate	•
-55°C				+85°C			+125°C	
ΔC - 12%				C ± 12°	%	ΔC ± 12%		
	C - 20%	6	$\Delta C \pm 20\%$ $\Delta C \pm 20\%$					%
	ΔC ± 5		,				cation.	
	ΔC ± 5						cation.	
$\Delta C \pm 5\%^*$ Max, LC = Less than initial specification. DF = Less than initial specification								
$\Delta C \pm 10\%$ * Max, LC = 125% of initial specification. DF = Less than initial specification								
	1%/10	000 hou	rs at 60)% confi	dence I	evel (+8	35°C)	
	3.3	3.3 5.2 1.8 2.5 -5.5 S Not More -55°C ΔC - 129 ΔC - 209 ΔC ± 5 ΔC ± 5	2.5 4.0 6.3 3.3 5.2 8.0 1.8 2.5 4.0 -55°C to + See Case Not More Than 0 -55°C ΔC - 12% ΔC - 20% ΔC ± 5%* Max DF = L ΔC ± 5%* Max DF = L ΔC ± 10%* Max DF = L	±20% 2.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.5 4.0 6.3 10 16 20 3.3 5.2 8.0 13 20 28 1.8 2.5 4.0 6.3 10 13 -55°C to +85°C (to +125°C with See Case Size and Specificatio Not More Than 0.01CV or 0.5μA, whice -55°C +85°C $\Delta C - 12\% \qquad \Delta C \pm 12\%$ $\Delta C - 20\% \qquad \Delta C \pm 20\%$ $\Delta C \pm 5\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 5\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 5\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 5\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 5\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 5\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 10\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 10\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 10\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 10\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 10\%* \text{ Max, LC} = \text{Less than initial Specification}$ $\Delta C \pm 10\%* \text{ Max, LC} = \text{Less than initial Specification}$	#20% (M), ±10% (K) 2.5 4.0 6.3 10 16 20 25 3.3 5.2 8.0 13 20 28 33 1.8 2.5 4.0 6.3 10 13 16 -55°C to +85°C (to +125°C with Deratin See Case Size and Specifications Table Not More Than 0.01CV or 0.5μA, whichever is -55°C	

*±12% ~ ±15% for extended values, ±20% for J & P case size values

RIPPLE CURRENT CORRECTION FACTOR:

Ambient Temperature	25°C	+55°C	+85°C	+105°C	+125°C
Correction Factor	1.0	0.90	0.80	0.40	0.15

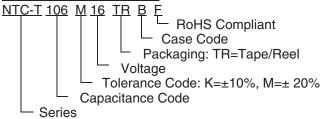
RIPPLE CURRENT/VOLTAGE RATINGS:

$$Imax. = \sqrt{\frac{Pd}{ESR}} \qquad V max. = Z \bullet \sqrt{\frac{Pd}{ESR}}$$

Imax. = Ripple Current rating (Arms)

Pd = Power dissipation (watt)

ESR = Equivalent series resistance (ohm)


V max. = Ripple voltage rating (Vrms)

Z = The capacitors impedance (ohm) = $\sqrt{(ESR)^2 + (XL-XC)^2}$

POWER DISSIPATION @ 25°C (FREE AIR) & **EQUIVALENT SERIES INDUCTANCE (ESL)**

Pd Max. (W)	ESL (nH)
0.025	1.00
0.050	1.20
0.070	1.20
0.070	1.50
0.080	1.50
0.090	
0.110	2.70
0.125	
0.150	3.00
0.165	3.00
	(W) 0.025 0.050 0.070 0.070 0.080 0.090 0.110 0.125 0.150

PART NUMBER SYSTEM

PRECAUTIONS

Please review the notes on correct use, safety and precautions found on our website at www.niccomp.com/tantpc

If in doubt or uncertainty, please review your specific application - process details with NIC's technical support personnel: tpmg@niccomp.com

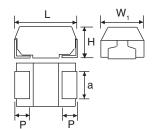
STANDARD AND EXTENDED PRODUCT SPECIFICATIONS TABLE

*Extended Case Sizes Chart show Case Size, Max. Tan δ @ 120Hz/+20°C, Max. ESR @ 100KHz/+20°C

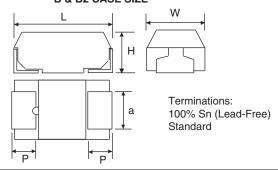
Cap	Cap Code Working Voltage (Vdc)												
(μF)	Code	2.5	4.0	6.3	10	16	20	25	35	50			
0.1	104	-	-	-	-	-	A2*6%/40Ω	-	Α 4%/18Ω	-			
0.15	154	-	-	-	-	-	Α2*6%/35Ω	-	Α 4%/18Ω	-			
0.22	224	-	-	-	-	-	Α2*6%/35Ω	-	Α 4%/18Ω	Β 4%/14Ω			
0.33	334	-	-	-	-	Ρ 10%/40Ω	Α2*6%/30Ω	-	Α 4%/15Ω	Β 4%/10Ω			
0.47	474	-	-	-	-	Ρ 10%/35Ω	Α2*6%/27Ω	Α 4%/14Ω	A*6%/12Ω B 4%/8.0Ω	Β 4%/9.0Ω			
0.68	684	-	-	-	Ρ 10%/25Ω	P 10%/25Ω A2*6%/25Ω	A2*6%/15Ω A 4%/12Ω	Α*6%/10Ω	A*6%/9.0Ω B 4%/5.4Ω	C 4%/7.0Ω			
1.0	105	-	-	Ρ 10%/25Ω	P 10%/25Ω A2*8%/25Ω	J 10%/30Ω P 20%/25Ω A1*6%/16Ω A 4%/10Ω	A2*6%/13Ω A*6%/9.0Ω	P 6%/8.0Ω A2 6%/13Ω A*6%/8.0Ω	A2 6%/13Ω A*6%/8.0Ω B 4%/4.8Ω	C 4%/5.5Ω			
1.5	155	-	Ρ 10%/25Ω	P 10%/25Ω A2*8%/25Ω	J 20%/30Ω P 20%/25Ω A2*8%/20Ω A 4%/8.0Ω	J 10%/25Ω A2*6%/13Ω A 4%/8.0Ω	A2*6%/13Ω A*6%/6.5Ω	A*6%/8.0Ω B 4%/4.6Ω	A*6%/8.0Ω B*6%/4.0Ω C 4%/3.0Ω	C 4%/4.0Ω			
2.2	225	Ρ 10%/25Ω	P 10%/25Ω A2*8%/25Ω	J 20%/20 Ω P 20%/20 Ω A2*8%/18 Ω A 4%/8.0 Ω	J 20%/30Ω P 20%/20Ω A2*8%/12Ω A 4%/7.0Ω	P 10%/19Ω A2*6%/13Ω A*6%/6.0Ω	P 10%/8.0Ω A2 6%/7.0Ω A*6%/6.0Ω B 4%/3.5Ω	A*6%/8.0Ω B*6%/4.0Ω	A 6%/5Ω B*6%/4.2Ω C 4%/3.0Ω	D 4%/1.8Ω			
3.3	335	Ρ 10%/25Ω	P 20%/20Ω A2*8%/18Ω A 4%/8.0Ω	J 20%/20Ω P 20%/13Ω A2*8%/9.0Ω A 4%/7.5Ω	J 20%/25Ω P 20%/20Ω A2*8%/12Ω A*8%/5.5Ω	P 10%/8.0Ω A2 8%/7.0Ω A*6%/5.0Ω B 4%/3.5Ω	A2 8%/5.0Ω A*6%/5.0Ω B2 6%/3.9Ω B*6%/3.0Ω	A 6%/7.0Ω B*6%/3.5Ω C 4%/2.5Ω	B2 6%/3.0Ω B*6%/4.0Ω C 4%/2.5Ω D 4%/2.0Ω	D 4%/1.4Ω			
4.7	475	P 20%/20Ω A2*8%/18Ω	P 20%/12Ω A2*8%/10Ω A 4%/7.5Ω	J 20%/15Ω P 20%/12Ω A2*8%/7.5Ω A*8%/6.0Ω	J 20%/10Ω P 20%/10Ω A2*8%/8.0Ω A*8%/5.0Ω B 4%/3.5Ω	A2 8%/4.5Ω A*6%/5.0Ω B*6%/3.0Ω	A2 15%/5.0 Ω A*6%/5.0 Ω B2 6%/3.0 Ω B*6%/3.0 Ω C 4%/2.4 Ω	B2 6%/3.0Ω B*6%/3.0Ω C 4%/2.4Ω	C*6%/2.2Ω D 4%/1.5Ω	D 4%/1.4Ω			
6.8	685	P 20%/20Ω A2*8%/16Ω	J 20%/15Ω P 20%/12Ω A2*8%/8.0Ω A*8%/6.0Ω	J 20%/7.0Ω P 20%/12Ω A2*8%/7.5Ω A*8%/5.0Ω B 6%/3.5Ω	A2 8%/8.0Ω A*8%/4.5Ω B 8%/3.0Ω	A2*6%/5.0Ω A*6%/5.0Ω B2 6%/5.0Ω B*6%/2.5Ω C 6%/1.9Ω	B2 6%/3.0Ω B*6%/2.8Ω C 6%/1.9Ω	B 6%/2.5Ω C*6%/1.9Ω D 6%/1.4Ω	C*6%/1.9Ω D 6%/1.3Ω	-			
10	106	J 20%/12Ω P 20%/12Ω A2*8%/15Ω	J 20%/12Ω P 20%/12Ω A2*12%/8.0Ω A*8%/5.0Ω B 6%/3.5Ω	J 20%/8.0Ω P 20%/12Ω A2*8%/10Ω A*8%/4.0Ω B 6%/3.0Ω	P 20%/6.0Ω A2 8%/5.0Ω A*8%/3.2Ω B2*8%/3.2Ω B*8%/2.5Ω C 6%/1.8Ω	A 8%/5.0Ω B2 8%/4.0Ω B*6%/2.4Ω C 6%/1.8Ω	B*6%/2.5Ω C*6%/1.8Ω D 6%/1.3Ω	C2 6%/2.0Ω C*6%/1.8Ω D 6%/1.2Ω	C 6%/1.5Ω D 6%/1.0Ω E*6%/1.0Ω	-			
15	156	J 20%/8.0Ω A2*12%/10Ω A*8%/5.0Ω	P 20%/ A2*12%/8.0Ω A*8%/4.0Ω B*8%/3.0Ω	$\begin{array}{l} \text{P } 20\%/5.0\Omega \\ \text{A2 } 12\%/4.0\Omega \\ \text{A*8}\%/3.5\Omega \\ \text{B2*8}\%/3.5\Omega \\ \text{B*8}\%/2.5\Omega \\ \text{C } 6\%/1.8\Omega \end{array}$	A2 20%/3.0Ω B2*8%/2.5Ω C 6%/1.8Ω	A 12%/5.0Ω B2*6%/2.5Ω C*6%/1.8Ω D 6%/1.8Ω	C*6%/1.7Ω D 6%/0.8Ω	C 6%/1.5Ω D*6%/1.0Ω	D*6%0.9Ω	-			
22	226	P 20%/4.0Ω A2*12%/10Ω A*8%/4.0Ω	$\begin{array}{l} P~20\%/5.0\Omega \\ A2~12\%/4.0\Omega \\ A^*8\%/3.5\Omega \\ B2^*8\%/3.5\Omega \\ B^*8\%/2.8\Omega \\ C~6\%/1.8\Omega \end{array}$	$\begin{array}{c} \text{P } 20\%/4.0\Omega \\ \text{A2 } 12\%/2.8\Omega \\ \text{A*} 10\%/4.5\Omega \\ \text{B2*} 12\%/4.5\Omega \\ \text{B*} 8\%/2.3\Omega \\ \text{C } 6\%/1.8\Omega \end{array}$	A 12%/2.5Ω B2 12%/4.0Ω B*8%/2.4Ω C*8%/1.8Ω D 6%/1.5Ω	B2 10%/2.2Ω B*6%/2.5Ω C*6%/1.6Ω D 6%/0.8Ω	C2 6%/1.4Ω C*6%/1.5Ω D*6%/0.8Ω	D*6%/0.8Ω	-	-			
33	336	P 20%/5.0Ω A2 12%/4.0Ω A*8%/3.5Ω B2*8%/3.5Ω B*8%/3.0Ω	$\begin{array}{l} P~20\%/4.0\Omega \\ A2~8\%/4.5\Omega \\ A^*10\%/4.5\Omega \\ B212\%/4.5\Omega \\ B^*8\%/2.4\Omega \\ C~6\%/1.8\Omega \end{array}$	$\begin{array}{l} \text{A2 } 18\%/3.0\Omega \\ \text{A } 12\%/5.0\Omega \\ \text{B2 } 12\%/1.7\Omega \\ \text{B*8}\%/2.0\Omega \\ \text{C*8}\%/1.8\Omega \\ \text{D } 6\%/1.5\Omega \end{array}$	B2 12%/1.7Ω B*8%/2.0Ω C*8%/1.6Ω D 6%/0.8Ω	B 8%/1.4Ω C2 6%/1.4Ω C*6%/1.2Ω D*6%/0.8Ω	D*6%/0.8Ω	D 6%/0.7Ω	-	-			

STANDARD AND EXTENDED PRODUCT SPECIFICATIONS TABLE

*Extended Case Sizes


Chart Shows Case Sizes, Max. Tan δ @120Hz/20°C, Max. ESR @ 100KHz/20°C

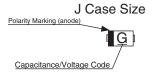
		Onan onono			1 12/20 C, IVIAX.	LOTT & TOOK	12/20 0	
Cap	Code				ing Voltage (Vo	,		
(μF)	Code	2.5	4.0	6.3	10	16	20	25
47	476	P 30%/6.0Ω A2 12%/4.5Ω A*12%/4.5Ω B2*12%/4.5Ω B*8%/2.4Ω	$\begin{array}{l} \text{P 30\%/3.0}\Omega\\ \text{A2 15\%/4.5}\Omega\\ \text{A 12\%/5.0}\Omega\\ \text{B2 12\%/3.0}\Omega\\ \text{B*8\%/2.0}\Omega\\ \text{C*8\%/1.8}\Omega\\ \text{D 6\%/1.2}\Omega \end{array}$	B2 12%/3.0Ω B 8%/3.0Ω C2 8%/1.0Ω		C*6%/1.2Ω D*6%/0.8Ω	D*6%0.8Ω	
68	686	A 18%/3.0Ω B*8%/2.0Ω	A 12%/2.5Ω B2 15%/3.0Ω B*8%/2.0Ω C*8%/1.6Ω D 6%/0.8Ω	$\begin{array}{c} \text{A 30\%/2.0} \Omega \\ \text{B2 20\%/2.0} \Omega \\ \text{B*10\%/1.8} \Omega \\ \text{C2 10\%/0.8} \Omega \\ \text{C*8\%1.2} \Omega \\ \text{D*8\%/0.8} \Omega \end{array}$	B 12%/0.9Ω C2 10%/1.0Ω C*8%/1.2Ω D*8%/0.8Ω	C 6%/0.7Ω D*6%/0.7Ω	·	
100	107	A 30%/2.0Ω B2 18%/2.0Ω B*8%/2.0Ω	$\begin{array}{c} \text{A 30\%/2.0} \Omega \\ \text{B2 20\%/1.3} \Omega \\ \text{B*12\%/2.0} \Omega \\ \text{C2 10\%/0.8} \Omega \\ \text{C*8\%/1.2} \Omega \\ \text{D*8\%/0.8} \Omega \end{array}$	B2 20%/1.3Ω B 12%/1.2Ω C2 10%/0.8Ω C*10%/0.9Ω D*8%/0.8Ω	C2 10%/0.8Ω C 10%/1.2Ω V 8%/0.5Ω D*8%/0.7Ω	D*10%/1.0Ω	-	-
150	157	A 30%/2.0Ω B2 20%/1.0Ω B*16%/5.0Ω C2 12%/0.8Ω	B 18%/2.0Ω C2 10%/0.8Ω C*10%/1.0Ω D*8%/0.7Ω	B 12%/1.0Ω C 10%/1.2Ω D*8%/0.7Ω	V 8%/0.5Ω D*10%/0.7Ω	D*6%/0.9Ω	-	-
220	227	B2 30%/1.0Ω B 18%/2.0Ω C2 12%/0.8Ω C*12%/1.0Ω	B 18%/0.5Ω C 12%/1.2Ω D*8%/0.7Ω	C 14%/1.2Ω V 12%/0.5Ω D*12%/0.8Ω	D 12%/1.0Ω E*8%/0.9Ω	-	-	-
330	337	B 25%/0.6Ω C 16%/1.2Ω	C 14%/1.2Ω V 12%/0.5Ω D*14%/0.7Ω	V 14%/0.5Ω D 14%/1.0Ω	-	-	-	-
470	477	B 35%/0.6Ω C 18%/1.2Ω D*14%/0.7Ω	D 16%/1.0Ω	D 20%/0.3Ω	-	-	-	-
680	687		D 24*/0.3Ω	-	-	-	-	-


DIMENSIONS (mm)

Case Code	Metric Code	English Code	L	W	Н	Р	а
J	1608	0603	1.6 ± 0.1	0.8 ± 0.1	0.8 ± 0.1	0.3 ± 0.15	0.6 ± 0.1
Р	2012	0805	2.0 ± 0.2	1.25 ± 0.2	1.2 MAX.	0.5 ± 0.2	0.9 ± 0.1
A2	3216	1206	3.2 ± 0.2	1.6 ± 0.2	1.2 MAX.	0.8 ± 0.3	1.2 ± 0.1
Α	3216	1206	3.2 ± 0.2	1.6 ± 0.2	1.6 ± 0.2	0.8 ± 0.3	1.2 ± 0.1
B2	3528	1411	3.5 ± 0.2	2.8 ± 0.2	1.2 MAX.	0.8 ± 0.3	2.3 ± 0.1
В	3528	1411	3.5 ± 0.2	2.8 ± 0.2	1.9 ± 0.2	0.8 ± 0.3	2.2 ± 0.1
C2	6032	2412	6.0 ± 0.3	3.2 ± 0.3	1.5 MAX.	1.3 ± 0.3	2.2 ± 0.1
С	6032	2412	6.0 ± 0.3	3.2 ± 0.3	2.6 ± 0.3	1.3 ± 0.3	2.2 ± 0.1
V	7343	2916	7.3 ± 0.2	4.3 ± 0.2	2.0 MAX.	1.3 ± 0.3	2.4 ± 0.1
D	7343	2916	7.3 ± 0.2	4.3 ± 0.2	2.9 ± 0.3	1.3 ± 0.3	2.4 ± 0.1
Е	7343H	2917	7.3 ± 0.2	4.3 ± 0.2	4.1 ± 0.2	1.3 ± 0.3	2.4 ± 0.1

J, P, A, A2, C, V, D & E CASE SIZE

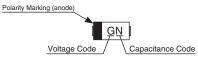
B & B2 CASE SIZE


CAPACITANCE CODES

07 11 7 1 0 1 1								
Cap. (μF)	STD EIA Code	EIA Code 198D	Code for P Case Size			Code for Case Siz		
	EIA Code	1900	r Case Size	2.5Vdc	4Vdc	6.3Vdc	10Vdc	16Vdc
0.1	104	A5	-	-	-	-	-	С
0.15	154	E5	-	-	-	-	-	-
0.22	224	J5	-	-	-	-	-	-
0.33	334	N5	N	-	-	-	-	-
0.47	474	S5	S	-	-	-	-	-
0.68	684	W5	W	-	-	-	-	-
1.0	105	A6	А	-	-	-	-	-
1.5	155	E6	E	-	-	-	Α	-
2.2	225	J6	J	-	-	٢	⋖	-
3.3	335	N6	N	-	-	7	-	-
4.7	475	S6	S	-	-	J	≻	-
6.8	685	W6	W	-	G	_	-	-
10	106	A7	Ā	е	Ω	r	-	-
22	226	J7	J	-		-	-	-
33	336	N7	N	-	-	-	-	-
47	476	S7	S	-	-	-	-	-

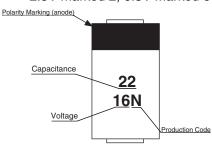
VOLTAGE CODES

Vottage	Code
2.5	е
4	G
6.3	J
10	Α
16	С
20	D
25	E
35	V
50	Н

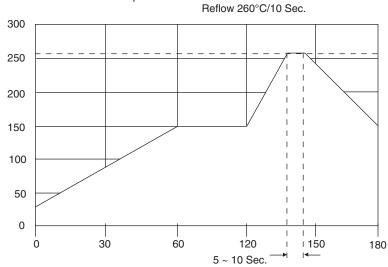

COMPONENT MARKING

PRODUCTION CODE

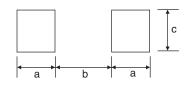
Year		Month											
Teal	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	
2006	N	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	
2007	а	b	С	d	е	f	g	h	j	k	I	m	
2008	n	р	q	r	S	t	u	V	W	Х	у	Z	
2009	A	В	С	D	Е	F	G	Н	J	K	L	М	



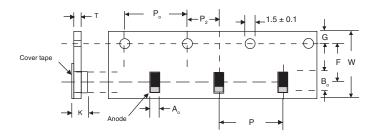
A & A2 Case Size Polarity Marking (anode) J106 Capacitance Code Voltage Code



C, V & D Case Size 2.5V marked 2, 6.3V marked 6



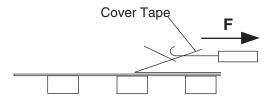
Flow/Reflow Soldering
Maximum Temperature/Time: Flow 260°C/5 Sec.

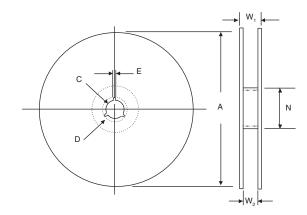

RECOMMENDED LAND PATTERN DIMENSIONS (mm)

Case Size	а	b	С
J	0.90	0.70	1.00
Р	1.05	0.50	1.20
A & A2	1.35	1.10	1.50
B & B2	1.35	1.40	2.70
С	2.00	2.90	2.70
D	2.05	4.10	2.90
D	2.05	4.10	2.90

TAPE DIMENSIONS (mm)

Metric Code	Case Code	A ₀ ±0.2	B ₀ ±0.2	W ±0.3	F ± 0.05	P ₀ ±0.1	P ₀ ±0.1	P ₀ ±0.05	G ±0.1	K ±0.2	Т	7" Reel
1608	J	1.0	1.8	8.0	3.5	4.0	2.0	2.0	1.75	1.1	0.2	4000
2012	Р	1.4	2.2	8.0	3.5	4.0	4.0	2.0	1.75	1.4	0.2	3000
3216	A2	1.0	3.5	8.0	3.5	4.0	4.0	2.0	1.75	1.4	0.2	3000
3216	Α	1.9	3.5	8.0	3.5	4.0	4.0	2.0	1.75	1.9	0.2	2000
3528	B2	3.2	3.8	8.0	3.5	4.0	4.0	2.0	1.75	1.4	0.2	3000
3528	В	3.2	3.8	8.0	3.5	4.0	4.0	2.0	1.75	2.1	0.2	2000
6032	С	3.7	6.4	12.0	5.65	4.0	8.0	2.0	1.5	3.0	0.3	500
7343	D	4.8	7.7	12.0	5.65	4.0	8.0	2.0	1.5	3.3	0.3	500
7343H	E	4.7	7.7	12.0	5.5	4.0	8.0	2.0	1.5	4.5	0.6	500


Cover tape peel-off specification


1. Peel-off speed: 300 mm/min.2. Peel-off force: F = 30 - 75g3. Peel-off angle: $\Theta = 0 - 15^{\circ}$

Peel-off speed (F) = 50mm/Sec.

REEL DIMENSIONS (mm)

	Tape Width	А	С	D	Е	N	W ₁	W ₂
	8mm	178 ±2.0	13 ±0.5	21 ±0.5	2.0 ±0.5	50 min.	10 ±2.0	14.5 max.
Γ	12mm	178 ±2.0	13 ±0.5	21 ±0.5	2.0 ±0.5	50 min.	14.5 ±2.0	18.5 max.

