

SIOV metal oxide varistors

Leaded varistors, SNF high operating temperature varistors, SNF automotive series

Series/Type: B722*

Date: January 2018

© EPCOS AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

B722*

SNF automotive series

Construction

- Round varistor element, leaded
- Coating: silicon resin, flame-retardant to UL 94 V-0
- Terminals: tinned copper wire

Features

- High resistance to cyclic temperature stress
- High operating temperature range up to 125 °C
- AEC-Q200 qualified
- Enhanced resistance against heat and humidity 85 °C, 85% r.h., 0.85 · V_V (1 mA), 1000 h for use in harsh environments
- PSpice models

Approvals

- **■** UL
- CSA (all types ≤320 V_{RMS})
- VDE
- CQC
- IEC

Options

■ Further disk diameters and voltage classes upon request

Delivery mode

■ Bulk (standard)

General technical data

Climatic category	to IEC 60068-1	40/125/56	
Operating temperature	to IEC 61051	-40 +125	°C
Storage temperature		-40 +150	°C
Electric strength	to IEC 61051	≥ 2.5	kV _{RMS}
Insulation resistance	to IEC 61051	≥ 100	ΜΩ

B722

SNF automotive series

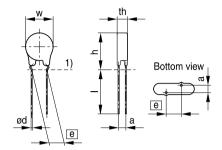
Electrical specifications and ordering codes Maximum ratings ($T_A = 125$ °C)

Ordering code	Туре	V_{RMS}	V_{DC}	i _{max}	I _n 1)	W _{max}	P _{max}
	(untaped)			(8/20 µs)	(8/20 µs)	(2 ms)	
	SIOV-			1 time	15 times		
		V	V	Α	Α	J	W
B72220X2271K501	SNF20K275E2S5	275	350	10000	3000	215	1.00
B72214X2301K501	SNF14K300E2S5	300	385	6000	3000	125	0.80
B72220X2381K501	SNF20K385E2S5	385	505	10000	3000	273	1.00
B72214X2421K501	SNF14K420E2S5	420	560	5000	3000	136	0.80
B72214X2551K501	SNF14K550E2S5	550	745	5000	3000	180	0.80

¹⁾ **Note:** Nominal discharge current I_n according to UL 1449, 4th edition.

Characteristics (T_A = 25 °C)

Ordering code	V _v	ΔV_{v}	V _{c,max}	i _c	C _{typ}
_	(1 mA)	(1 mA)	(i _c)		(1 kHz)
	V	%	V	Α	nF
B72220X2271K501	430	±10	710	100	850
B72214X2301K501	470	±10	775	50	400
B72220X2381K501	620	±10	1025	100	600
B72214X2421K501	680	±10	1120	50	290
B72214X2551K501	910	±10	1500	50	215



B722⁹

SNF automotive series

Dimensional drawings

1) Seating plane to IEC 60717

VAR0727-N-E

Please note: Paint legs may have cracks or chips due to the mechanical forces acting on the wires, but this does not affect the performance of the component.

Dimensions

Ordering code	[e] ±1	a (typical)	W _{max}	th _{max}	h _{max}	I _{min}	d ±0.05
-	mm	mm	mm	mm	mm	mm	mm
B72214X2301K501	7.5	1.9	17.5	8.6	23.0	25.0	0.8
B72214X2421K501	7.5	2.6	17.5	10.5	23.5	25.0	0.8
B72214X2551K501	7.5	3.4	17.5	11.5	23.5	25.0	0.8
B72220X2271K501	10.0	2.0	23.5	8.8	30.0	25.0	1.0
B72220X2381K501	10.0	2.5	23.5	10.6	30.5	25.0	1.0

Leaded varistors, SNF high operating temperature B722* SNF automotive series

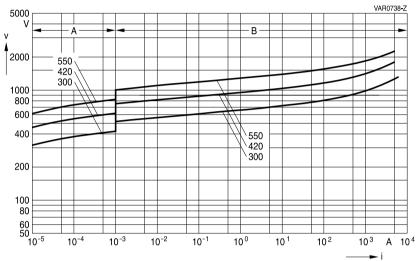
Reliability data

Test	Test methods/conditions	Requirement
Varistor voltage	The voltage between two terminals with the specified measuring current applied is called V_V (1 mA _{DC} @ 0.2 2 s).	To meet the specified value
Clamping voltage	The maximum voltage between two terminals with the specified standard impulse current (8/20 µs) applied.	To meet the specified value
Operational life	MIL STD 202F, method 108A, UCT,	∆V/V (1 mA) ≤10%
	0.85 x V _v (1 mA), 1000 h	No visible damage
Load dump	ISO 7637-1, test pulse 5 ("load dump")	ΔV/V (1 mA) ≥-15%
	(DIN 40 839 Part 1; impulse 5)	No visible damage
	7 mm varistors (S07KAUTO): 10 × 12 J	
	10 mm varistors (S10KAUTO):	
	10 × 25 J 14 mm varistors (S14KAUTO):	
	10 × 50 J	
	20 mm varistors (S20KAUTO):	
	10 × 100 J	
	(minimum 40 ms time of energy input, 60 s interval)	
Temperature cycling	JESD22, method JA-104	∆V/V (1 mA) ≤5%
	-40 °C up to +125 °C, dwell time 10 min., 1000 cycles	No visible damage
Bias humidity	MIL STD 202, method 103,	∆V/V (1 mA) ≤10%
	85 °C, 85% r. H., 0.85 x V _v (1 mA), 1000 h	No visible damage

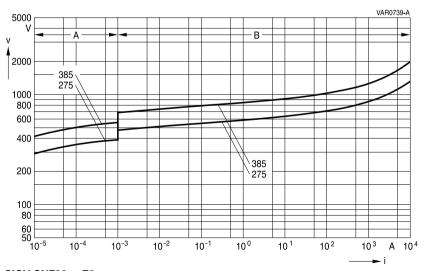
Note:

UCT = Upper category temperature

LCT = Lower category temperature



B722


SNF automotive series

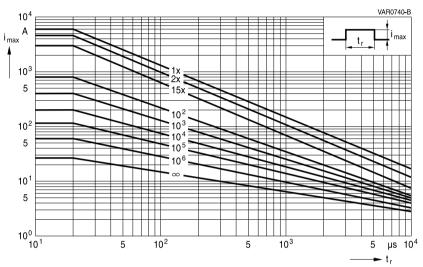
v/i characteristics

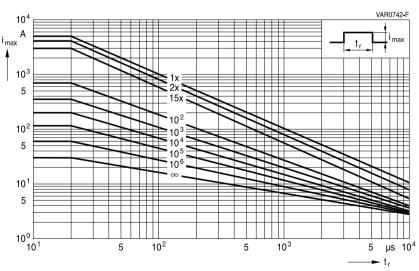
v = f (i) - for explanation of the characteristics refer to "General technical information", 1.6.3 A = Leakage current, B = Protection level } for worst-case varistor tolerances

SIOV-SNF14 ... E2

SIOV-SNF20 ... E2

SNF automotive series


B722⁹

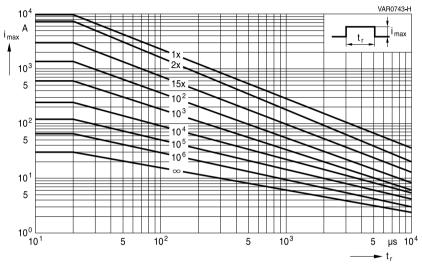

Derating curves

Maximum surge current $i_{max} = f(t_r, pulse train)$

For explanation of the derating curves refer to "General technical information", section 1.8.1

SIOV-SNF14K300E2S5

SIOV-SNF14K420 ... K550E2S5


B722

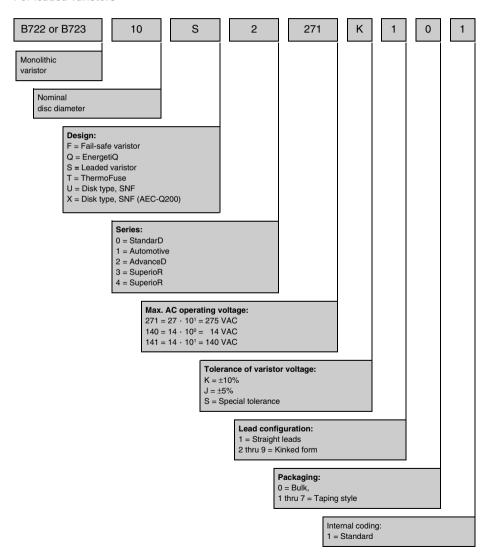
SNF automotive series

Derating curves

Maximum surge current $i_{max} = f(t_r, pulse train)$

For explanation of the derating curves refer to "General technical information", section 1.8.1

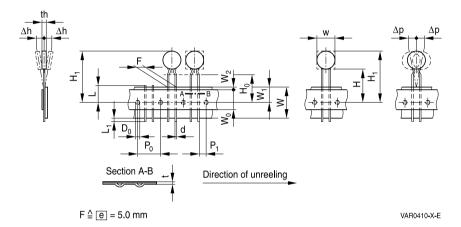
SIOV-SNF20K275 ... K385E2S5



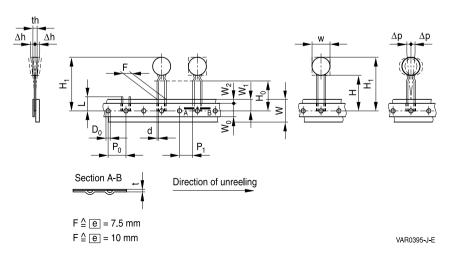
Taping, packaging and lead configuration

1 EPCOS ordering code system

For leaded varistors


B722

SNF automotive series


2 Taping and packaging of leaded varistors

Tape packaging for lead spacing \boxed{e} = 5 fully conforms to IEC 60286-2, while for lead spacings \boxed{e} = 7.5 and 10 the taping mode is based on this standard.

2.1 Taping in accordance with IEC 60286-2 for lead spacing 5.0 mm

2.2 Taping based on IEC 60286-2 for lead spacing 7.5 and 10 mm

B722*

SNF automotive series

2.3 Tape dimensions (in mm)

Sym-	<i>e</i> = 5.0	Tolerance	<i>e</i> = 7.5	Tolerance	<i>e</i> = 10.0	Tolerance	Remarks
bol							
W		max.		max.		max.	see tables in
							each series
th		max.		max.		max.	under
							"Dimensions"
d	0.6	±0.05	0.8	±0.05	1.0	±0.05	
P_0	12.7	±0.3	12.71)	±0.3	12.7	±0.3	±1 mm/20
							sprocket holes
P ₁	3.85	±0.7	8.95	±0.8	7.7	±0.8	
F	5.0	+0.6/-0.1	7.5	±0.8	10.0	±0.8	
Δh	0	±2.0	depends o	n s	depends on	S	measured at
Δp	0	±1.3	0	±2.0	0	±2.0	top of compo-
							nent body
W	18.0	±0.5	18.0	±0.5	18.0	±0.5	
W_{o}	5.5	min.	11.0	min.	11.0	min.	Peel-off
							force ≥ 5 N
W_1	9.0	±0.5	9.0	+0.75/-0.5	9.0	+0.75/-0.5	
W_2	3.0	max.	3.0	max.	3.0	max.	
Н	18.0	+2.0/-0	18.0	+2.0/-0	18.0	+2.0/-0	2)
H_0	16.0	±0.5	16.0	±0.5	16.0	±0.5	3)
	(18.0)		(18.0)				
H ₁	32.2	max.	45.0	max.	45.0	max.	
D_0	4.0	±0.2	4.0	±0.2	4.0	±0.2	
t	0.9	max.	0.9	max.	0.9	max.	without lead
L	11.0	max.	11.0	max.	11.0	max.	
L ₁	0.5	max.					

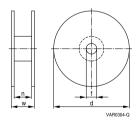
¹⁾ Taping with $P_0 = 15.0$ mm upon request

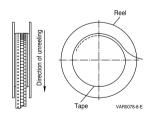
²⁾ Applies only to uncrimped types

³⁾ Applies only to crimped types ($H_0 = 18$ upon request)

B722⁹

SNF automotive series


2.4 Taping mode


Example: B72210S0271K1 5 1

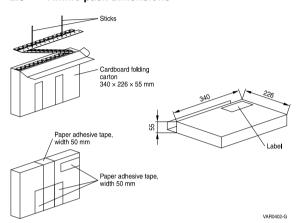
Digit 14

Digit 14	Taping	Reel type	Seating plane height H ₀	Seating plane height H	Pitch distance
	mode		for crimped types	for uncrimped types	P_0
			mm	mm	mm
0	_	Bulk	-	_	_
1	G	1	16	18	12.7
2	G2	I	18	_	12.7
3	G3	II	16	18	12.7
4	G4	II	18	_	12.7
5	G5	Ш	16	18	12.7
6	GA	Ammo pack	16	18	12.7
7	G2A	Ammo pack	18	_	12.7
Internal	coding fo	r special tapin	g		
-	G6	Ш	18	_	12.7
	G10	II	16	18	15.0
	G11	П	18	_	15.0
	G10A	Ammo pack	16	18	15.0
	G11A	Ammo pack	18	_	15.0

2.5 Reel dimension

Dimensions (in mm)

Reel type	d	f	n	w
I	360 max.	31 ±1	approx. 45	54 max.
II	360 max.	31 ±1	approx. 55	64 max.
III	500 max.	23 ±1	approx. 59	72 max.


If reel type III is not compatible with insertion equipment because of its large diameter, nominal disk diameter 10 mm and 14 mm can be supplied on reel II upon request (taping mode G3).

SNF automotive series

B722⁹

2.6 Ammo pack dimensions

3 Lead configuration

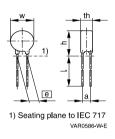
Straight leads are standard for disk varistors. Other lead configurations as crimp style or customer-specific lead wire length according to 3.1, 3.2, 3.3 and 3.4 are optional. Crimped leads (non-standard) are differently crimped for technical reasons; the individual crimp styles are denoted by consecutive numbers (S, S2 through S5) as shown in the dimensional drawings below.

The crimp styles of the individual types can be seen from the type designation in the ordering tables.

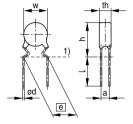
3.1 Crimp style mode

Example: B72210S0271K 5 01 | Digit 13

Digit 13 of ordering code	Crimp style	Figure			
1	Standard, straight leads	1			
2	S2	2			
3	S3	3			
5	S5	4			
Available upon request					
Internal coding	_	5			

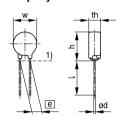

B722

SNF automotive series


3.2 Standard leads and non-standard crimp styles

The basic dimensions in figure 1 to 5 are valid for types with either round or square (EnergetiQ series) component head.

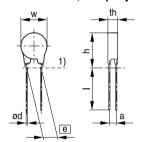
Standard, straight leads


Non-standard, crimp style S2

1) Seating plane to IEC 60717 VAR0411-F-E

Figure 2

Non-standard, crimp style S3



1) Seating plane to IEC 60717 VAR0396-R-E

Figure 3

Figure 1

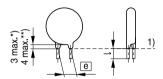
Non-standard, crimp style S5

1) Seating plane to IEC 60717 VAR0726-M-E

Figure 4

B722*

SNF automotive series



3.3 Trimmed leads (non-standard)

Varistors with cut leads available upon request.

Lead length tolerances:

Straight leads +/-0.8 mmCrimped leads +/-0.5 mmMinimum lead length 3.0 mm

- 1) Seating plane to IEC 60717
- *) For round component head
- **) For EnergetiQ series, square component head

Figure 5

R722

SNF automotive series

Cautions and warnings

General

- EPCOS metal oxide varistors are designed for specific applications and should not be used for purposes not identified in our specifications, application notes and data books unless otherwise agreed with EPCOS during the design-in-phase.
- Ensure suitability of SIOVs through reliability testing during the design-in phase. SIOVs should be evaluated taking into consideration worst-case conditions.
- 3. For applications of SIOVs in line-to-ground circuits based on various international and local standards there are restrictions existing or additional safety measures required.

Storage

- 1. Store SIOVs only in original packaging. Do not open the package prior to processing.
- 2. Recommended storage conditions in original packaging:

Storage temperature: −25 °C ... +45 °C,

Relative humidity: <75% annual average,

<95% on maximum 30 days a year.

Dew precipitation: is to be avoided.

- 3. Avoid contamination of an SIOV's during storage, handling and processing.
- 4. Avoid storage of SIOVs in harmful environments that can affect the function during long-term operation (examples given under operation precautions).
- The SIOV type series should be soldered after shipment from EPCOS within the time specified:

SIOV-S, -Q, -LS, -B, -SNF 24 months ETFV/ T series. -CU 12 months.

Handling

- 1. SIOVs must not be dropped.
- 2. Components must not be touched with bare hands. Gloves are recommended.
- 3. Avoid contamination of the surface of SIOV electrodes during handling, be careful of the sharp edge of SIOV electrodes.

Soldering (where applicable)

- 1. Use rosin-type flux or non-activated flux.
- Insufficient preheating may cause ceramic cracks.
- 3. Rapid cooling by dipping in solvent is not recommended.
- 4. Complete removal of flux is recommended.
- Temperatures of all preheat stages and the solder bath must be strictly controlled especially for T series (T14 and T20).

B722

SNF automotive series

Mounting

- Potting, sealing or adhesive compounds can produce chemical reactions in the SIOV ceramic that will degrade the component's electrical characteristics.
- 2. Overloading SIOVs may result in ruptured packages and expulsion of hot materials. For this reason SIOVs should be physically shielded from adjacent components.

Operation

- 1. Use SIOVs only within the specified temperature operating range.
- 2. Use SIOVs only within the specified voltage and current ranges.
- Environmental conditions must not harm SIOVs. Use SIOVs only in normal atmospheric conditions. Avoid use in deoxidizing gases (chlorine gas, hydrogen sulfide gas, ammonia gas, sulfuric acid gas etc), corrosive agents, humid or salty conditions. Contact with any liquids and solvents should be prevented.

Display of ordering codes for EPCOS products

The ordering code for one and the same EPCOS product can be represented differently in data sheets, data books, other publications, on the EPCOS website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes

B722⁹

SNF automotive series

Symbols and terms

Symbol	Term
С	Capacitance
C_{typ}	Typical capacitance
i	Current
$i_{\rm c}$	Current at which V _{c, max} is measured
I _{leak}	Leakage current
i _{max}	Maximum surge current (also termed peak current)
I _{max}	Maximum discharge current
l _n	Nominal discharge current to UL 1449
LCT	Lower category temperature
L_{typ}	Typical inductance
P_{max}	Maximum average power dissipation
R_{ins}	Insulation resistance
R_{min}	Minimum resistance
T_A	Ambient temperature
t_r	Duration of equivalent rectangular wave
UCT	Upper category temperature
V	Voltage
V_{clamp}	Clamping voltage
V _{c, max}	Maximum clamping voltage at specified current i _c
V_{DC}	DC operating voltage
V_{jump}	Maximum jump start voltage
\mathbf{V}_{max}	Maximum voltage
V_{op}	Operating voltage
V_{RMS}	AC operating voltage, root-mean-square value
$V_{RMS,\;op,\;max}$	Root-mean-square value of max. DC operating voltage incl. ripple current
V_{surge}	Super imposed surge voltage
V_{v}	Varistor voltage
ΔV_{V}	Tolerance of varistor voltage
W_{LD}	Maximum load dump
W_{max}	Maximum energy absorption
е	Lead spacing

All dimensions are given in mm.

The commas used in numerical values denote decimal points.

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule we are either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether a product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.tdk-electronics.tdk.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to our General Terms and Conditions of Supply.
- 7. Our manufacturing sites serving the automotive business apply the IATF 16949 standard. The IATF certifications confirm our compliance with requirements regarding the quality management system in the automotive industry. Referring to customer requirements and customer specific requirements ("CSR") TDK always has and will continue to have the policy of respecting individual agreements. Even if IATF 16949 may appear to support the acceptance of unilateral requirements, we hereby like to emphasize that only requirements mutually agreed upon can and will be implemented in our Quality Management System. For clarification purposes we like to point out that obligations from IATF 16949 shall only become legally binding if individually agreed upon.

Important notes

8. The trade names EPCOS, CeraCharge, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CTVS, DeltaCap, DigiSiMic, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PowerHap, PQSine, PQvar, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.tdk-electronics.tdk.com/trademarks.

Release 2018-10