108-5124 Rev. E4 Product Specification (製品企規格) Dual Line Interlock Connector (D.L.I コネクタ)

Following first 9 pages are English version and last 9 pages are Japanese version. This top sheet is not part of the specification but explains both of English and Japanese versions are available.

このトップシートに続く最初の9ページは英語版で、その後の9ページは日本語版です。 このトップシートは、規格には含まれませんが、英語、日本語両方があることを説明して います。

108-5124

Product Specification Dual Line Interlock Connector (D.L.I. Connector)

1. Scope:

This specification covers performance requirements and test methods for Dual Line Interlock Connector for wire-to-board termination (D.L.I. connector).

2. Product Descriptions:

Dual Line Interlock Connector comprises cap housing connector with contact posts preloaded in a 4.6mm distance dual row disposition with 3.0mm center line spacing mounted on PCB, and plug housing that capsulates wire-crimped receptacle contacts to mate with posts. Two types of connectors, vertical and horizontal ones are available for cap housing. The bottom end of the post contact is soldered on PCB.

This interconnection system is suitable for wire-to-board termination of electronic control circuits for automotive use and other electronic system equipment. The cap housing is secured on printed circuit board with the use of two 3mm dia. screws.

3. Patent:

Patent pending (No. 147672, Utility Model, Japan)

- 4. Definitions of Component:
- 4.1 Contact:
- 4.1.1 Receptacle Contact:

A wire crimping female contact for mating with post contact in housing.

4.1.2 Post Contact:

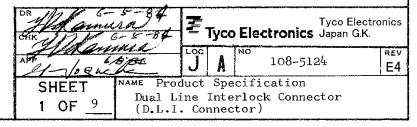
A male post contact to mate with receptacle contact in the form of cap housing assembly after being mounted on cap housing.

4.2 Cap Connector Assembly:

A connector assembly consisting of cap housing and post contacts, used for PCB termination after mounting on it.

4.3 Plug Connector Assembly:

A connector assembly consisting of plug housing and receptacle contacts. Plug connector assembly completes termination by mating with cap connector assembly.


Two types of plug housings are available, being classified by the type of contact locking in position.

Standard Type:

Contacts are locked in contact position by the locking-lance provided on the contact.

Double Locking Type:

After contacts are locked by the contact locking lance, double locking is made by inserting locking plateinto the housing cavity from the rear (wire side) of housing. Two locking plates are used for one connector. Locking plate coannot be applied to standard type connector.

PRINT DIST

- 5. Material and Finish:
- 5.1 Receptacle Contact:

Receptacle contact shall be made of 0.3mm thick brass, conforming to C-2600R-H of JIS H 3100 or equivalent and finished with 0.8 μ m minimum tin-plating.

5.2 Post Contact:

Post contact shall be made of 0.4 mm square phosphor bronze, conforming to C 5101R-H of JIS H 3110 and finished with tin-plating $0.8 \mu \text{m}$ thich minimum tin-plating.

5.3 Housing:

Housing is made of molded 6/6 Nylon resin (LEONA* 1300S, manufactured by Asahi Chemical Industries Co. Ltd.), conforming to UL 94V-2.

6. Quality Assurance Provisions:

Unless otherwise specified, all the tests shall be performed in accordance with the test methods specified in Para. 8 and test sequence specified in Table 2. The tested products shall show the designated performance capability conforming to the requirements specified in Table 1, Para. 7.2.

6.1 Test Conditions:

Unless otherwise specified, all the tests shall be performed under any combination of the following test conditions.

Room Temperature: Relative Humidity: 15 – 35^oC 45 – 75%

Atmospheric Pressure:

86.7-107kPa(650-800mmHg)

6.2 Temperature Rating:

Temperature rating of the connectors in mated condition shall be within the range of -30°C and 105°C. This temperature includes ambient temperature and temperature increase produced by the operating energized current.

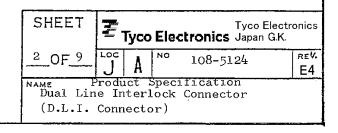
6.3 Applicable Wire Sizes:

The wires used for terminating recentacle contact shall be of the sizes and composition as specified below:

Wire Size: 0.56 - 0.3mm²

 $0.56 - 0.3 \text{mm}^2$ (AWG #20-#22) Stranded one wire only

Insulation Range: 2.4mm - 1.4mm in diameter


- 7. Performance:
- 7.1 Rating:

7.1.1 Voltage Rating:

250V AC or 350V DC Maximum

7.1.2 Current Rating:

5A Continuous, Maximum

7• 2	When tested in accord	ents: Nance with the test methods specified in Para. 8, rements specified in Table 1 shall be met.								
Para- graph Number	Test Item	Specified Requirements	Test Method Para- graph							
7.2.1	Termination Resistance (Low Level)	6 mΩ max (Initial) 12 mΩ max (Final)	8.1							
7.2.2	Insulation Resistance	500 MΩ min. at (500V DC)	8.2							
7.2.3	Dielectric Strength	Must withstand 1000V AC for 1 minute without showing abnormalities.	8.3.							
7.2.4	Temperature Rising	65°C increase over ambient temperature max.	8.4							
7.2.5	Contact Retention Force	49N min. Standard Type 98N min. Double Locking Type	8.5							
7.2.6	Crimp Tensile Strength	78N min. for 0.56mm ² (#20 AWG) wire 49N min. for 0.3mm ² (#22AWG) wire	8.6							
7.2.7	Post Retention Force	19.6N min. Initial (Applicable to vertical type only)	8.7							
7.2.8	Housing Locking Retention Force	59N min.								
7.2.9	Vibration	No electrical discontinuity greater than 10 microseconds shall occur during test. Final termination resistance(Low Level) shall be 12 m Ω max.	8.9							
7.2.10	Humidity (Steady State)	Connector shall be free from defects such as cracks, blister etc. that are detrimental to connector function. Final termination resistance (Low Level) shall be 12 m Ω max.								
7.2.11	Sulfuric Acid Gas Resistibility	Connector shall be free from defects such as cracks, blister etc. that are detrimental to connector function. Final termination resistance (Low Level) shall be 12 m Ω max.								
7.2.12	Temperature Cycling	Connector shall be free from defects such as cracks, blister etc. that are detrimental to connector function. Final termination resistance (Low Level) shall be $12~\mathrm{m}\Omega$ max.								
7.2.13	Current Cycling	Final termination resistance (low level) shall be 12 m Ω max.	8.13							
7.2.14	Solderability	More than 95% of tested area must be covered with fresh, uniformly working solder. This is applied to plated surfaces of contact only.	8.14							
7.2.15	Contact Insertion &. Extraction Force	Insertion Force: 5.9N max.(Initial) Extraction Force: 98lmN min.(Initial)	8.15							
		Table 1 (To be continued) SHEET Tyco Electronics Jap OF 9 No. 108-5124 NAME Product Specification	o Electron an G.K.							

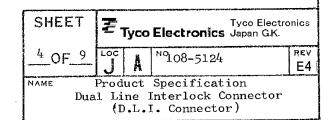
(D.L.I. Connector)

Performance Requirements (Continued): 7.2 7, 108-51 Test. Para-Method graph Specified Requirements Test Item Para-graph Number Insertion Measured Extraction 7.2.16 Connector Insertion/ of Pos Cycle(s) Force N Force N Extraction Force at: Initial 118 max. 24.5 min. 20 8.16 50th. Cycle 118 max. 19.6 min. Initial 98 19.6 min. max. 16 50th. Cycle 98 14.7 max. min. Customer Release Initial 68 max. 14.7 min. 12 50th. Cycle 68 120min. max. 9.8 Initial 49 max. min. Я AMP SECURITY CLASSIFICATION 7.8 min. max. 50th. Cycle Connector shall be free from defects such as 7.2.17 Salt Spray cracks, blister, etc. that are detrimental to 8.17 (REF.) connector functions. Final termination resistance (low level) shall be $50~\text{m}\Omega$ max.

Table 1 (End)

8. Test Methods:

8.1 Termination Resistance:


Contact-loaded and mated pair of connectors are subject to testing by applying closed circuit current of 50mA at open circuit voltage of 50mV flowing through the circuit as shown in Fig. 1. Low level termination resistance is calculated from the millivolt drop reading after deducting the resistance of 75mm-long wire used for termination. The probing point on post connector side must be 1 mm apart from the bottom surface of housing, and measurements shall be done in the manner one after one to cover all the connector positions.

8.2 Insulation Resistance:

Contact-loaded and mated pair of connectors are subject to testing by applying test potential of 500V DC between the adjacent contacts and between the contacts and the ground.

8.3 Dielectric Strength:

Contact-loaded and mated pair of connectors are subject to testing by applying test potential of 1000V AC for 1 minute between the adjacent contacts and between the contacts and the ground.

8.4 Temperature Rising:

Contact-loaded and mated pair of connectors are subject to testing by applying test current of 5A DC to the circuits. The temperature rising shall be measured by probing at the wire crimp by using thermocouple.

8.5 Contact Retention Force:

Insert contact which is crimped on an approximately 75mm-long, 0.5 - 0.56mm² wire, into the connector housing, and after securely fastened on a tensile testing machine, apply an axial pull-off load to the end of crimped wire by operating the head to travel with the speed at a rate of 100mm a minute. Contact retention force is determined when the wire is broken or contact is dislodged from housing.

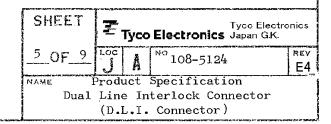
8.6 Crimp Tensile Strength

Securely fasten a wire-crimped contact on a tensile testing machine and apply an axial pull-off load to the crimped wire by operating the head to travel with the speed at a rate of 100mm a minute. Crimp tensile strength is determined when the wire is broken or is pulled off from the wire crimp.

8.7 Post Retention Force:

Accept the post connector with the test fixture specified as shown in Fig. 3. and apply an axial push-in load to the head of post contact vertically to dislodge from the mounted position. The force required to dislodge the post shall be measured.

8.8 Housing Locking Mechanism Retention Force:


Contact-loaded and mated pair of connectos are subject to testing by applying an axial load to separate the locked connectors. The force required to separate the connectors with or without damage of locking mecanism. shall be measured and recorded.

8.9 Vibration:

Contact-loaded and mated pair of connectors are subject to testing after all the contacts series wired. The connectors are secured on the vibratile table, and sweeping vibration to reciprocate from 10 to 55 Hz. changing one cycle a minute, with the accelerated velocity of 430% is applied to it. During the vibration, closed circuit current of 0.1A at open circuit voltage of 13V DC is applied to the circuit, and monitored for electrical discontinuity greater than 10 microsecond taking place in the circuit. Test duration shall be 2 hours each for three axial directions of X, Y and Z, totally 6 hours.

8.10 Humidity:

Contact-loaded and mated pair of connectors are subject to testing by exposing under humidity conditioning in the test chamber, where relative humidity ranging 90 - 95% at the temperature of 40° C is maintained. After exposing for 96 hours, the sample shall be taken out from the test chamber and reconditioned in the room temperature for 1 hour before undergoing subsequent measurements.

8.11 Sulfurous Acid Gas Resistibility:

Contact-loaded and mated pair of connectors are subject to exposure under sulfurous acid gas atmosphere of 10 p.p.m. with relative humidity of 90% minimum for 48 hours.

8.12 Temperature Cycling:

Contact-loaded and mated pair of connectors are subject to exposure under 5 cycles of temperature conditioning in the oven, each cycle consisting of at -30 $\pm 2^{\circ}$ C for 3 hours, followed by at $25^{\pm 10}_{-10}$ or for 30 minutes, then at 80 $\pm 2^{\circ}$ C for 3 hours, and reconditioned at 25 $\pm 10^{\circ}$ C for 30 minutes. After completion of test cycles, subsequent measurement shall be made.

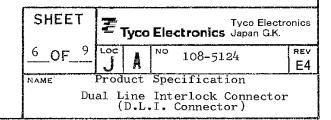
8.13 Current Cycling:

Contact-loaded and mated pair of connectors are subject to testing by applying 50 cycles of current cycling test conditioning, each cycle consisting of energizing 3A DC for 45 minutes followed by de-energizing for 15 minutes. After completion of test conditioning, subsequent measurement shall be performed.

8.14 Solderability:

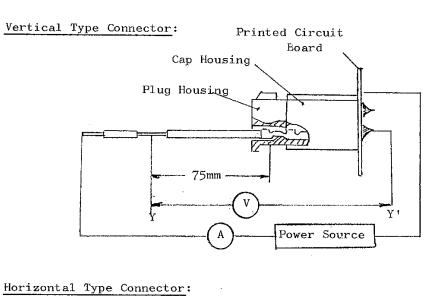
Dip soldering area of post contacts of cap connector in flux (rosin solution in methanol) for 5-10 seconds, then dip into the melted solder (60% tin, 40% lead), temperature of which is controlled at $230^{\circ}\text{C}^{+}5^{\circ}\text{C}$ for $3^{+}0.3$ seconds. After immersion, soldered area shall be visually inspected with the aid of X10 magnifying glass.

8.15 Contact Insertion/Extraction Force:


Securely fasten a pair of contacts on tensile testing machine in the manner that they mate and unmate as the head is operated with the speed at a rate of 100 mm a minute. The force required to mate and unmate with the post used for cap housing, shall be measured and recorded.

8.16 Connector Insertion/Extraction Force:

Securely fasten contact-loaded cap housing connector on tensile testing machine, and the couterpart plug housing connector to be fixed on the head in the manner to mate and unmate as the head is operated. Connector insertion/extraction force is tested by operating the head to travel with the speed at a rate of 100mm a minute. The force required to mate and unmate the connectors is measured and recorded. For this test, locking mechanism must be kept not set in effect.


8.17 Salt Spray:

Contact-loaded and mated pair of connectors are subject to exposure under spray of 5% salt solution at 35°C for 48 hours. After test duration, linse the connector in the tap water, and have it dried in the room temperature for 1 hour before undergoing subsequent measurement.

			MARIN MEDIUS ()	((trend of all all all all all all all all all al	leant an magaine	Marie - Wasser y P Mg	The state of the s	ጎጽሞ ቋልሚሳኒ. ፡፡	leteridae een ag	DM 198800 -27.9	We with him Table C	Patient Count	li ni ranki sasta di		STALL PROPERTY.	WCD C DO ONE
108-5124	9•	Test Sequence: Tests shall be performed in	the	seqi	uenc	e sj	oeci	fied	l in	Tab	ole :	2,				
108		by each sample grouped.										•				
NUMBER	Test Method	Test Item				Sar	nple			Gr	oup					
5 Z	Para- graph		I	2	3	4	5	6	7	8		10	11	12	13	14
er	8.1	Termination Resistance (Low Level)						9	13	193	① ③	① ③				<u> </u>
Customer Release	8.2	Insulation Resistance	(1) (4)													,
ರಜಿ	8.3	Dielectric Strength	8							,						
YT NOIL	8.4	Temperature Rising		1						-						
AMP SECURITY CLASSIFICATION	8.5	Contact Retention Force	6													
MP S	8.6	Crimp Tensile Strength			1											
4 O	8.7	Post Retention Force				1										
	8.8	Housing Locking Mechanism Retention Force					1								-	
	8.9	Vibration						2								
	8.10	Humidity	3						2				·			
	8.11	Sulfurous Acid Gas Resisti- bility								2						
	8.12	Temperature Cycling									2					
	8.13	Current Cycling			energy designation of the second							2				
	8.14	Solderability			Section 1								1			
	8.15	Contact Insertion/Extraction Force												1		
	8.16	Connector Insertion/Extraction Force													1	
	8.17	Salt Spray			<u> </u>											2
			1	able	ė 2								Ī			
	-															
		·														
										and take Debuga	w					
	es colonia de la				-	SH	EET	3	E Ty	co E	Elect	ron	T ics J	yco E apan	Electro G.K.	nics
	Contra de maior				-	<u>7</u> ()F_9			A	NO .	L08-	5124			REV E4
					1	IAME		Pr Dual	odu	et S	pec:	ific	atio k Co	n nne	l ctor	
	1				ļ								ctor			

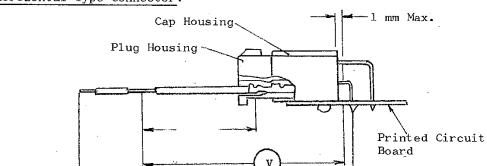
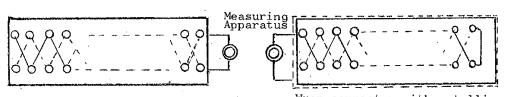
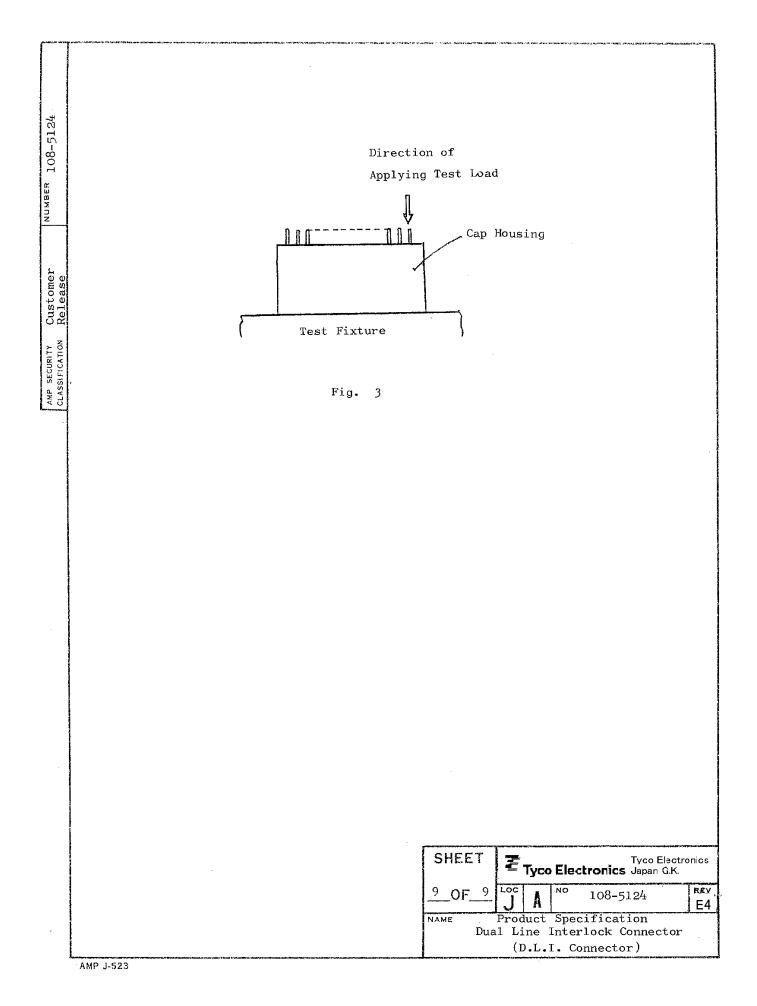



Fig 1

Power Source


Wrap connector with metallic foil. Metallic foil must be kept 5mm apart from the surface of connector contacts.

Measurement between Contacts and the Ground

Measurement between Adjacent Contacts

Fig. 2

SHEET	3	Тусо	Tyco Electro Electronics Japan G.K.	nics
_8_OF_9_	Loc	A	NO 108-5124	REV E4
	ine	Inte	ification rlock Connector tor)	

一般顧客用 管理基準

社 内 標 進

標準)

Tyco Electronics

適用事業所 全 社

タイコ エレクトロニクス ジャパン合同会社

製 規 品

(製 造

108 - 5124

デュアル・ライン・インターロック・コネクタ (D.L.I. CONNECTOR)

1. 概要

本コネクタは二列の配列で、列間 4.6 mm各列の極間ピッチ 3 mmで構成され、ロック機構の ある基板対電線の接続方式で基板に対する電線の引き出し方向により水平接続型と垂直接 続型がある。

基板側はキャップ・アッセンブリのポスト脚部をはんだ付けする。電線側は圧着されたリ セプタクル・コンタクトをそれぞれの極数のプラグ・ハウジングに挿入しそれぞれキャップ アッセンブリに嵌合する。

2. 適用範囲

本規格はタイコエレクトロニクスアンプ(網で製造される基板対電線接続型デュアル・ライン・イン ターロック・コネクタ(D.L.I.コネクタ)の全ての製品について適用される。

3. 特 許

本製品は実用新案申請済(Na.147672他)である。

4. 構成部品の名称と意味

4.1 コンタクト

リセプタクル・コンタクトの通称とし、雌側接触子で電線を圧着して使用する。

4.2 ポスト

雄側接触子の意味で、キャップ・ハウジングに組立てられてキャップ・アセンブリと して使用される。

4.3 キャップ・アセンブリ

キャップ・ハウジングとポストを組立てたもので、基板に固定して使用する。

分類: 作成: 2/26/180 改訂 108 - 5124E4 名称: D.L.I. コネクタ

配布

昭和 53 年 11 月 6 日 制 定

1 頁 9 頁中

管理基準: 一般顧客用

AMP J-002-1

4.4 プラグ・ハウジング

電線圧着済のコンタクトを挿着するハウジングでキャップ・アセンプリと一対で一組の コネクタとなる。

ブラグ・ハウジングはコンタクトの固定方式により次の2種類がある。

〔標準型〕 コンタクトに設けられたランスによりプラグ・ハウジングに固定する。

〔二重ロック型〕 コンタクトのランスにより固定した後ハウジングの後部(電線引き出 し側)からロッキングプレートを挿入して二重に固定する。 プラグ・ハウジング1ケに対してロッキング・プレート2ケで1組と なる(このロッキング・プレートは標準型プラグ・ハウジングには使 用できない)。

5. 使用材料・表面処理

- 5.1 コンタクト
 - (1) 材 質; 黄 銅 t = 0.3 (JIS H 3100 C2600R-H相当品)
 - (2) 表面処理; 錫メッキ済 0.8 μ以上
- 5.2 ポ ス ト
 - (1) 材 質; りん青銅 0.64^口(JISH 3110 C5101R-H相当品)
 - (2) 表面処理; 錫めっき済 0.8 μ以上
- 5.3 ハウジング
 - (1) 材 質; 66ナイロン, UL 94V-2
- 6. 品質保証条件

本製品規格は完全に管理された製品について品質を保証する。

6.1 試験環境

試験は下記に示す環境条件のもとで行うこと。

度

15℃~35℃

度

45%~75%

気圧(水銀柱) 86.7 - 107kPa (650 - 800mmHg)

- 6.2 使用温度範囲(嵌合状態)
 - -30℃~+105℃(周囲温度+通電による温度上昇含)
- 6.3 適用電線範囲

0.56~0.3 mm (AWG#20~#22) 撚線1本圧着

被覆外径 φ2.4 mm ~ φ1.4 mm

分類: 標準の名称: 標準のコード: 改 訂 2 製品規格 D.L.I. コネクタ 108 - 5124E4 [

AMP J-002-1 管理基準: 一般顧客用

7. 性 能

7.1 定 格

(1) 電 圧 ; 最大 AC 250 V, DC 350 V

(2) 電 流 ; 最大連続 5 A

7.2 一般性能

第8項「試験方法」に基づき試験した結果, 第1表の性能を満足するとと。

表 1

項	番	試	験	項	8		規 格 値	試験方法項 番
7. 2.	. 1	п —	レ〜	・ル	抵	抗	初期值; 6mΩ以下 試験後; 12mΩ以下	8. 1
7. 2	. 2	絶	緑	抵		抗	500MQ以上(DC 500V)	8. 2
7. 2	. 3	耐	[i		圧	AC 1000V,1分間で異常なきこと。	8. 3
7. 2	. 4	温	度	上		昇	65℃以下	8. 4
7. 2	. 5	コンタ	標		1	型 型	49N 以上 98N 以上 (コンタクトロックのみの時49N 以上	8. 5
7. 2	. 6	圧 着	部弓	張	· 強	度	AWG 20 (0.56 mm²) 78 N 以上 AWG 22 (0.3 mm²) 49 N 以上	8. 6
7. 2	. 7	ポス	١	保	持	力	初期 19.6N以上(垂直接続型のみに適用)	8. 7
7. 2	. 8	ハウジ	ング	ロッ	ク強	度	59 N 以上	8. 8
7. 2	. 9	振				動	振動中10μsec を越える不連続導通を生じないこと。ローレベル抵抗は12 mΩ以下。	8. 9
7. 2	. 10	耐 (定	常		態)	性	割れ,フクレ,その他機能を損う欠陥のない こと。ローレベル抵抗は 12 mΩ以下。	8. 10
7. 2	. 11	亜 硫	酸	ガ	ス	性	割れ,フクレ,その他機能を損う欠陥のない こと。ローレベル抵抗は12 mQ以下。	8. 11
7. 2	. 12	温度	サ	1	ŋ	ル	割れ,フクレ,その他機能を損う欠陥のない こと。ローレベル抵抗は12 mQ以下。	8. 12

分類:	製	_	 規		標準の名称:			٠			標準のコード:	改訂	3	頁
	秋	ÜÜ	乃兄	格		Б. Г. Т.	J	不	9	ø	108-5124	E4	9 厚	中

表 1 (続き)

項番	試 験 項 目	規 格 値	試験方法 項 番
7. 2. 13	電流サイクル	ローレベル抵抗 12 mΩ以下	8. 13
7. 2. 14	はんだ付性	はんだヌレ 95%以上(但しめっき面のみ	8. 14
7. 2. 15	コンタクト単体挿抜力	ゲージ挿入力引抜力初回5.9 N 以下98 lmN 以上	8. 15
		極 数 回 数 挿入力 引抜力 以下 N 以	- 1
		20 初 回 118 24.5 50 回 118 19.6	
7. 2. 16	コネクタ挿抜力	16 初 回 98 19.6 50 回 98 14.7	8. 16
		12 初 回 68 14.7	
		50 回 68 12 8 初 回 49 9.8	_
		50 🗏 49 7.8	
7. 2. 17 参 考	塩 水 噴 霧	割れ,フクレ,その他機能を損う欠陥のな こと。ローレベル抵抗は 50 m Ω 以下。	8. 17

8. 試験方法

8.1 ローレベル抵抗

第1図の如くコネクタを嵌合した状態で、開放電圧 50 mV 以下、短絡電流 50 m A 以下の回路で測定し、電線導体抵抗 75 mm分を差し引いて算出する。

なお, 測定は1極ずつ行りものとする。

8.2 絶縁抵抗

コネクタを嵌合した状態で各々の隣接するコンタクト相互間及びコンタクト対アース間を測定する。測定電圧は DC 500 V とする。

分類:	401 - 10 th	標準の名称:	標準のコード:	改訂 4 頁
	製品規格	D.L.I. コネクタ	$1\ 0\ 8-5\ 1\ 2\ 4$	E4 9 頁中

AMP J-002-1

8.3 耐電圧

コネクタを嵌合した状態で第2図の如く隣接するコンタクト相互間及びコンタクト対アース間に AC1000Vを1分間印加する。

8.4 温度上昇

コネクタを嵌合した状態で直列に結線し、測定カ所はコンタクト圧着部分を熱電対法 にて測定する(通電電流 DC5A)。

8.5 コンタクト保持力

ハウジングに 約75㎜の長さ, $0.5\sim0.56 \, \mathrm{min}$ の断面積の電線を圧着したコンタクトが 挿着されたコネクタをショッパー引張試験機に取り付け,電線を軸方向へ毎分約 $100 \, \mathrm{mn}$ の速度で引張り,コンタクトがハウジングから抜けた時の荷重を測定する。

8.6 圧着部引張強度

電線を圧着したコンタクトをショッパー引張試験機に取りつけ、電線を軸方向に毎分約100mmの速度で引張り最大荷重を測定する。

8.7 ポスト保持力

キャップ・アセンブリを第3図の如く底面を上にしてポスト先端を軸方向に垂直にフォースゲージで押して最大値を測定する。なお、測定は1本ずつ行うこと。

8.8 ハウジングロック強度

コネクタを嵌合しロック機構の作用した状態で一方を固定し、他方を軸方向に毎分約 100 mm の速度で引張り、最大荷重を測定する。

8.9 振動

コネクタを嵌合し,ブリント基板に固定した試料を直列回路になるよう結線し振動試験機に取り付け,開放電圧 DC13V,短絡電流 0.1Aを通電する。

振動方向: X, Y, Z方向 各2時間

振動加速度: $43m/s^2(4.4G)$ 一定

振動周波数: 10~200Hz 往復1分間

8.10 耐湿性

嵌合状態の試料を、湿度 90~95%、温度 40 $^{\circ}$ の環境中で連続 96 時間放置後、室 温中に 1 時間放置してから測定する。

分類:	標準の名称:		
製品規格	D. L. I. コネク	タ 108-5124 E4 9 頁	#

8.11 亜硫酸ガス性

篏合状態の試料をガス濃度 10 PPM, 湿度 90 %以上の環境中で連続 4 8 時間放置後 測定する。

8.12 温度サイクル

嵌合状態の試料を $-30^{\pm 2}$ $\mathbb{C}/3$ 時間 $\rightarrow 25^{+10}_{-5}$ $\mathbb{C}/30$ $\rightarrow 80^{\pm 2}$ $\mathbb{C}/3$ 時間 $\rightarrow 25^{+10}_{-5}$ $\mathbb{C}/30$ 分を 1 サイクルとした環境中に 5 サイクル放置後 測定する。

8.13 電流サイクル

嵌合状態の試作に DC 3Aを 45分間通電, 15分間切断の状態を 1 サイクルとし, 50 サイクル 行った後 測定する。

8.14 はんだ付性

キャップ・アセンブリのポストのはんだ付部分をフラックス(ロジンのメターノール溶液)に $5\sim10$ 秒浸漬した後,230 C \pm 5 C のはんだ(錫 60 %,鉛 40 %) 槽中に, 3 \pm 0.5 秒間浸漬し,倍率 約 10 倍で 観察する。

8.15 コンタクト単体挿抜力

コンタクトを引張試験機に取り付けキャップハウジングに使用されているポストを用いて 軸方向に毎分100mmの速度で操作し測定する。

8.16 コネクタ 挿抜力

キャップ・アセンプリを引張試験機に取り付け、コンタクトを挿着したプラグ・ハウジングを軸方向に毎分 100mmの速度で操作し測定する。 ハウジングのロック機構は作用させないで行う。

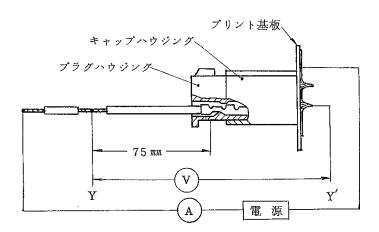
8.17 塩水噴霧

嵌合状態の試料を塩水濃度 5 %, 温度 35 ℃の環境中で連続 48 時間放置し,塩の堆積物を水洗いした後, 1 時間放置してから測定する。

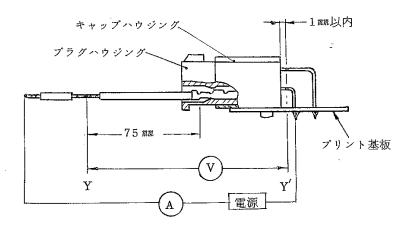
分類:標準の名称:標準のコード:改訂6 頁製品 規格D. L. I. コネクタ108-5124E4 9 頁中

9. 試験順序

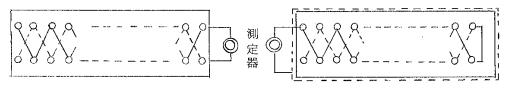
試験は各試料をグループ別に分け、表2の順序で実施すること。


表 2

試験方法	試 験 項 目				試	験	グ	ル		プ	番	号			
武 級刀法	八 被 坝 日	1	2	3	4	5	6	7	8	9	10	11	12	13	14
8. 1	ローレベル抵抗						① ③	① ③	① ③	① ③	① ③				① ③
8. 2	絶 縁 抵 抗	① ④													
8. 3	耐 電 圧	② ⑤													
8. 4	温度上昇		1							-					
8. 5	コンタクト保持力	6								,					
8. 6	圧着部引張強度			1							,				
8. 7	ポスト保持力				1				_						
8. 8	ハウジングロック強度					1									
8. 9	振動						2								
8. 10	耐 湿 性	3						2							
8. 11	亜硫酸ガス性								2						
8. 12	温度サイクル						<u> </u>			2		· ··-			
8. 13	電流サイクル										2				
8. 14	はんだ付性											1			
8. 15	コンタクト単体挿抜力												1		
8. 16	コネクタ挿抜力													1	
8. 17	塩 水 噴 霧														2


分類:	製	品	規	格	標準の名称:	D.L.I.	コネクタ	標準のコー 108	ド: -5124	改 訂 E4	7 頁 9 頁中
									A4	. トレペ 5	52.2 2000 (2)

管理基準: 一般顧客用


垂直型の場合

水平型の場合

第 1 図

ハウジング表面に導体箔を巻く

〔注〕 導体箔は露出しているコンタクト から 5 mm以上離すこと。

コンタクト相互間

第 2 図

コンタクト対アース間

分類:標準の名称:標準のコード:改訂8 頁製品規格D.L.I. コネクタ108-5124E49 頁中

A4. トレペ 55.6 2000 (2)