

VESUVIO® TECHNOLOGY Product Brief

Version: 1.2 16-Feb-21

High-temperature DC-DC Converter Platform

General Description

VESUVIO® technology is a turnkey nonisolated DC-DC converter platform offering ultimate reliability and extreme operating temperature range **from -55°C to +225°C.** It implements a voltage mode, constant frequency and continuous current mode (CCM) synchronous buck converter topology. The technology from CISSOID provides a flexible and scalable reference design and an evaluation board for non-isolated DC-DC converters applications such as switchedmode power supplies and point-of-loads, with high-efficiency on the whole temperature range from -55°C to +225°C.

VESUVIO® is built around CISSOID's chipset CHT-MAGMA & CHT-HYPERION (PWM controller and half-bridge driver) plus some high-temperature MOSFETs from the CISSOID's PLANET family.

The VESUVIO® technology is available under license from CISSOID. The evaluation board is available in a 10W output power configuration, suitable to deliver a 5V voltage output from a wide voltage input range. The output voltage and power range can easily be modified by the user to fit different needs.

Applications

- Distributed power architectures in aeronautics, aerospace, industrial and military electronic systems:
 - PoL (Point of Loads)
 - PDU (Power Distribution Units)
- SMPS power supplies in down-hole tools such as MWD and LWD equipment

VESUVIO® Technology Kit Content:

- EVK-VESUVIO-30 Evaluation-Board:
 - Qualified from -55 to +175°C (Ta)
 - 200°C Polyimide PCB
 - Active components all qualified from -55 to +225°C (Tj)
- Data-sheet
- Detailed electrical schematic
- Bill-of-Material
- Application Note
- User's License
- 5 hours of engineering support

Evaluation Board - Key Features

- Input voltage range: 6V to 30V
- **Output voltage: +5V** (other voltages possible through customization)
- Output Power: 10W max
- Switching frequency: 230kHz
- Soft start for inrush current limitation
- Clock synchronization input & output
- Efficiency: up to 93%
- Bill of Material:
 - Resistors (1/8W): 20 pcs
 - $\circ~$ Capacitors (up to 22µF): 18 pcs
 - $\circ~$ 33 μH inductor: 1 pc
 - CISSOID parts: 2 ICs and 2 MOSFET transistors
- PCB Dimension: Φ 100mm [4.2"]

Functional Block Diagram

VESUVIO® DC-DC Converter Technology is based on a synchronous buck architecture which provides voltage step-down capability with high efficiency compared to traditional voltage regulator solutions.

Efficiency

Efficiency vs. Load current at -55°C, 125°C and 225°C (junction) for various input voltages and V_{out}=5V

Absolute Maximum Ratings

Supply Voltage V_{IN} to GND Load current (no short-circuit protection) -0.3 to 35V 2.5A

Operating Conditions

Supply Voltage VIN to GND
Junction temperature
Load current

6V to 30V -55°C to +225°C 0 to 2A

Electrical Characteristics (EVK-VESUVIO-30)

Unless otherwise stated: $T_j=25^{\circ}$ C. **Bold underlined** values indicate values over the whole temperature range (-55°C < T_j < +225°C).

Parameter	Condition	Min	Тур	Max	Units
Supply voltage V _{IN}	I _{out} <100mA I _{out} <1A I _{out} =0 to 2A	6 7 8		<u>30</u>	V
Ouput current I _{out}		<u>0</u>		<u>2</u>	А
Output voltage V _{out}	$T_a=125^{\circ}C$; $V_{IN}=8V$; $I_{out}=0$ to 2A	4.85	5	5.15	V
Output voltage temperature drift dV _{out} /dT	$V_{IN}=7V$, I_{out} <1A $V_{IN}=8V$, I_{out} =0 to 2A		<u>500</u>		µV/°C
Output voltage DC line regula- tion dV _{out} /dV _{IN}			<u>+4</u>		mV/V
Output voltage DC load regula- tion dVout/dIout	V _{IN} =8V, I _{out} =0 to 2A T _a =-55°C T _a =225°C		+10 +13		mV/A
Output ripple	I _{out} =0 to 2A; V _{IN} =8V V _{IN} =10V V _{IN} =20V V _{IN} =30V		30 50 75 80		mV_{pk-pk}
Switching frequency	Internal default oscillator		230		kHz
Switching frequency drift over temperature			<u>0.18</u>		kHz/°C
Duty-cycle		0		93	%
Efficiency (V _{out} xI _{out})/(V _{IN} xI _{IN})	I _{out} =500mA ; T _a =225°C V _{IN} =7∨ V _{IN} =30V		87 78		%
Current consumption at zero load current I _Q	V _{IN} =7V ENDR high (-55°C) ENDR high (225°C) ENDR low (-55°C) (output is off) ENDR low (225°C) (output is off)		5.3 7.2 1.8 3.17		mA
Load capacitance			2*22		μF
Output inductor			33		μH
Current through digital inputs IDIN					
CROWBAR	T _a =-55°C T _a =225°C Internal pull down T _a =-55°C T _a =225°C		75 36 50 25	<u>150</u> <u>100</u>	μA
Digital input high voltage V _{IH}		<u>VDD-1.2</u>		VDD+0.3	V
Digital input low voltage V _{IL}		<u>-0.3</u>		<u>1.5</u>	V

Contact

CISSOID S.A.

Headquarters and contact EMEA:	CISSOID S.A. – Rue Francqui, 3 – 1435 Mont Saint Guibert - Belgium T : +32 10 48 92 10 - F: +32 10 88 98 75 Email: <u>sales@cissoid.com</u>
Sales Representatives:	Visit our website: <u>http://www.cissoid.com</u>

Disclaimer

Neither CISSOID, nor any of its directors, employees or affiliates make any representations or extend any warranties of any kind, either express or implied, including but not limited to warranties of merchantability, fitness for a particular purpose, and the absence of latent or other defects, whether or not discoverable. In no event shall CISSOID, its directors, employees and affiliates be liable for direct, indirect, special, incidental or consequential damages of any kind arising out of the use of its circuits and their documentation, even if they have been advised of the possibility of such a damage. The circuits are provided "as is". CISSOID has no obligation to provide maintenance, support, updates, or modifications.